Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T16:51:26.151Z Has data issue: false hasContentIssue false

Black Hole Binaries in Quiescence

Published online by Cambridge University Press:  23 June 2017

Charles D. Bailyn*
Affiliation:
Department of Astronomy, Yale University, PO Box 208101, New Haven CT, 06520-8101USA email: [email protected] Yale-NUS College, 16 College Avenue West, Singapore, 138527
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in optical and IR wavelengths allows the binary parameters to be robustly determined — as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-ray binaries, which has taken on a new importance in the era of gravitational wave astronomy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbot, B. P., et al. 2016, ApJ, 818, L22.Google Scholar
Beer, M. E. & Podsiadlowski, P. 2002, MNRAS, 331, 351.CrossRefGoogle Scholar
Cantrell, A. G., et al. 2010, ApJ, 710, 1127.CrossRefGoogle Scholar
Corbel, S., et al.] 2013, MNRAS, 428, 2500.Google Scholar
Corral-Santana, J. M., et al. 2016, A&A, 587, 61.Google Scholar
Elvis, M., Page, C. G., Pounds, K. A., Ricketts, M. J., & Turner, M. L. J. 1975, Nature, 257, 656.CrossRefGoogle Scholar
Fender, R. P., Gallo, E., & Jonker, P. G. 2003, MNRAS, 343. L99.CrossRefGoogle Scholar
Foellmi, C., Depagne, E., Dall, T. H., & Mirabel, F. 2006, A&A, 457, 249.Google Scholar
Gallo, E., et al. 2006, MNRAS 370, 1351.Google Scholar
Greene, J., Bailyn, C. D., & Orosz, J. A. 2001, ApJ, 554, 1290.Google Scholar
Kreidberg, L., Bailyn, C. D., Farr, W. M., & Kalogera, V. 2012, ApJ, 757, 36 Google Scholar
MacDonald, R. K. D., et al. 2014, ApJ, 784, 2.Google Scholar
McClintock, J. E. & Remillard, R. A. 1986, ApJ, 308, 110.Google Scholar
Nielsen, J., Steeghs, D., & Vritilek, S. D. 2008, MNRAS, 384, 849.Google Scholar
Remillard, R. A. & McClintock, J. E. 2006, ARA&A 44. 49.Google Scholar
White, N. E. & van Paradijs, J. 1996, ApJ, 473, L25.Google Scholar
Wu, J., et al. 2016, ApJ, 825, 46.CrossRefGoogle Scholar