Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:51:39.807Z Has data issue: false hasContentIssue false

The birth and death of organic molecules in protoplanetary disks

Published online by Cambridge University Press:  01 February 2008

Thomas Henning
Affiliation:
Max Planck Institute for AstronomyKoenigstuhl 17, D-69117 Heidelberg, Germany email: [email protected], [email protected]
Dmitry Semenov
Affiliation:
Max Planck Institute for AstronomyKoenigstuhl 17, D-69117 Heidelberg, Germany email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The most intriguing question related to the chemical evolution of protoplanetary disks is the genesis of pre-biotic organic molecules in the planet-forming zone. In this contribution we briefly review current observational knowledge of physical structure and chemical composition of disks and discuss whether organic molecules can be present in large amounts at the verge of planet formation. We predict that some molecules, including CO-bearing species such as H2CO, can be underabundant in inner regions of accreting protoplanetary disks around low-mass stars due to the high-energy stellar radiation and chemical processing on dust grain surfaces. These theoretical predictions are further compared with high-resolution observational data and the limitations of current models are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Acke, B. & van den Ancker, M. E. 2004, A&A, 426, 151Google Scholar
Aikawa, Y. & Herbst, E. 1999, A&A, 351, 233Google Scholar
Aikawa, Y., Momose, M., Thi, W.-F., et al. 2003, PASJ, 55, 11CrossRefGoogle Scholar
Aikawa, Y., van Zadelhoff, G. J., van Dishoeck, E. F., & Herbst, E. 2002, A&A, 386, 622Google Scholar
Belloche, A., Menten, K. M., Comito, C., et al. 2008, ArXiv e-prints, 801Google Scholar
Bergin, E. A., Aikawa, Y., Blake, G. A., & van Dishoeck, E. F. 2007, in: Reipurth, B., Jewitt, D., & Keil, K. (eds.), Protostars and Planets V, p. 751Google Scholar
Bergin, E., Calvet, N., D'Alessio, P., & Herczeg, G. J. 2003, ApJ (Letters), 591, L159CrossRefGoogle Scholar
Bouwman, J., Henning, T., Hillenbrand, L. A., et al. 2008, ArXiv e-prints, 802Google Scholar
Brittain, S. D., Rettig, T. W., Simon, T., et al. 2003, ApJ, 588, 535CrossRefGoogle Scholar
D'Alessio, P., Calvet, N., Hartmann, L., Lizano, S., & Cantó, J. 1999, ApJ, 527, 893CrossRefGoogle Scholar
Dartois, E., Dutrey, A., & Guilloteau, S. 2003, A&A, 399, 773Google Scholar
d'Hendecourt, L. B., Allamandola, L. J., Baas, F., & Greenberg, J. M. 1982, A&A (Letters), 109, L12Google Scholar
Draine, B. T. 1978, ApJS, 36, 595CrossRefGoogle Scholar
Dullemond, C. P., Henning, T., Visser, R., et al. 2007, A&A, 473, 457Google Scholar
Dutrey, A., Guilloteau, S., & Guelin, M. 1997, A&A (Letters), 317, L55Google Scholar
Dutrey, A., Guilloteau, S., & Ho, P. 2007a, in: Reipurth, B., Jewitt, D., & Keil, K. (eds.), Protostars and Planets V, p. 495Google Scholar
Dutrey, A., Henning, T., Guilloteau, S., et al. 2007b, A&A, 464, 615Google Scholar
Eisner, J. A. 2007, Nature, 447, 562CrossRefGoogle Scholar
Finocchi, F. & Gail, H.-P. 1997, A&A, 327, 825Google Scholar
Garrod, R. T. & Herbst, E. 2006, A&A, 457, 927Google Scholar
Garrod, R. T., Wakelam, V., & Herbst, E. 2007, A&A, 467, 1103Google Scholar
Geers, V. C., van Dishoeck, E. F., Visser, R., et al. 2007, A&A, 476, 279Google Scholar
Glassgold, A. E., Feigelson, E. D., Montmerle, T., & Wolk, S. 2005, in: Krot, A. N., Scott, E. R. D., & Reipurth, B. (eds.), Astronomical Society of the Pacific Conference Series, Vol. 341, Chondrites and the Protoplanetary Disk, p. 165Google Scholar
Glassgold, A. E., Najita, J., & Igea, J. 1997a, ApJ, 480, 344CrossRefGoogle Scholar
Glassgold, A. E., Najita, J., & Igea, J. 1997b, ApJ, 485, 920CrossRefGoogle Scholar
Glassgold, A. E., Najita, J. R., & Igea, J. 2007, ApJ, 656, 515CrossRefGoogle Scholar
Hassel, G. E. Jr., 2004, PhD thesis, AA(RENSSELAER POLYTECHNIC INSTITUTE)Google Scholar
Hollis, J. M., Jewell, P. R., Lovas, F. J., & Remijan, A. 2004, ApJ (Letters), 613, L45CrossRefGoogle Scholar
Igea, J. & Glassgold, A. E. 1999, ApJ, 518, 848CrossRefGoogle Scholar
Ilgner, M., Henning, T., Markwick, A. J., & Millar, T. J. 2004, A&A, 415, 643Google Scholar
Ilgner, M. & Nelson, R. P. 2008, ArXiv e-prints, 802Google Scholar
Isella, A., Testi, L., Natta, A., et al. 2007, A&A, 469, 213Google Scholar
Kastner, J. H., Zuckerman, B., Weintraub, D. A., & Forveille, T. 1997, Science, 277, 67CrossRefGoogle Scholar
Katz, N., Furman, I., Biham, O., Pirronello, V., & Vidali, G. 1999, ApJ, 522, 305CrossRefGoogle Scholar
Lada, C. J. 1985, ARAA, 23, 267CrossRefGoogle Scholar
Lahuis, F., van Dishoeck, E. F., Boogert, A. C. A., et al. 2006, ApJ (Letters), 636, L145CrossRefGoogle Scholar
Leger, A., Jura, M., & Omont, A. 1985, A&A, 144, 147Google Scholar
Najita, J., Bergin, E. A., & Ullom, J. N. 2001, ApJ, 561, 880CrossRefGoogle Scholar
Natta, A., Testi, L., Calvet, N., et al. 2007, in: Reipurth, B., Jewitt, D., & Keil, K. (eds.), Protostars and Planets V, p. 767Google Scholar
Öberg, K. I., Fuchs, G. W., Awad, Z., et al. 2007, ApJ (Letters), 662, L23CrossRefGoogle Scholar
Pascucci, I., Hollenbach, D., Najita, J., et al. 2007, ApJ, 663, 383CrossRefGoogle Scholar
Pavlyuchenkov, Y., Semenov, D., Henning, T., et al. 2007, ApJ, 669, 1262CrossRefGoogle Scholar
Piétu, V., Dutrey, A., & Guilloteau, S. 2007, A&A, 467, 163Google Scholar
Qi, C., Kessler, J. E., Koerner, D. W., Sargent, A. I., & Blake, G. A. 2003, ApJ, 597, 986CrossRefGoogle Scholar
Qi, C., Wilner, D. J., Aikawa, Y., Blake, G. A., & Hogerheijde, M. R. 2008, ArXiv e-prints, 803Google Scholar
Qi, C., Wilner, D. J., Calvet, N., et al. 2006, ApJ (Letters), 636, L157CrossRefGoogle Scholar
Rodmann, J., Henning, T., Chandler, C. J., Mundy, L. G., & Wilner, D. J. 2006, A&A, 446, 211Google Scholar
Salyk, C., Pontoppidan, K. M., Blake, G. A., et al. 2008, ApJ (Letters), 676, L49CrossRefGoogle Scholar
Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E. 2003, A&A, 410, 611Google Scholar
Semenov, D., Pavlyuchenkov, Y., Schreyer, K., et al. 2005, ApJ, 621, 853CrossRefGoogle Scholar
Semenov, D., Wiebe, D., & Henning, T. 2004, A&A, 417, 93Google Scholar
Semenov, D., Wiebe, D., & Henning, T. 2006, ApJ (Letters), 647, L57CrossRefGoogle Scholar
Shalabiea, O. M. & Greenberg, J. M. 1994, A&A, 290, 266Google Scholar
Sicilia-Aguilar, A., Hartmann, L. W., Watson, D., et al. 2007, ApJ, 659, 1637CrossRefGoogle Scholar
Snyder, L. E. 2006, Proceedings of the National Academy of Science, 103, 12243CrossRefGoogle Scholar
van Boekel, R., Min, M., Leinert, C., et al. 2004, Nature, 432, 479CrossRefGoogle Scholar
van den Ancker, M. E., Bouwman, J., Wesselius, P. R., et al. 2000, A&A, 357, 325Google Scholar
van Dishoeck, E. F. 2004, ARAA, 42, 119CrossRefGoogle Scholar
van Dishoeck, E. F., Jonkheid, B., & van Hemert, M. C. 2006, in: Sims, I. R. & Williams, D. A. (eds.), Chemical evolution of the Universe, Faraday discussion, Vol. 133, p. 231CrossRefGoogle Scholar
van Zadelhoff, G.-J., Aikawa, Y., Hogerheijde, M. R., & van Dishoeck, E. F. 2003, A&A, 397, 789Google Scholar
Voshchinnikov, N. V. & Henning, T. 2008, ArXiv e-prints, 803Google Scholar
Willacy, K., Klahr, H. H., Millar, T. J., & Henning, T. 1998, A&A, 338, 995Google Scholar
Willacy, K., Langer, W., Allen, M., & Bryden, G. 2006, ApJ, 644, 1202CrossRefGoogle Scholar
Willacy, K. & Langer, W. D. 2000, ApJ, 544, 903CrossRefGoogle Scholar
Woodall, J., Agúndez, M., Markwick-Kemper, A. J., & Millar, T. J. 2007, A&A, 466, 1197Google Scholar
Zasowski, G., Markwick-Kemper, F., Watson, D. M., et al. 2007, ArXiv e-prints, 712Google Scholar