Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T15:24:44.306Z Has data issue: false hasContentIssue false

Beyond model fitting SEDs

Published online by Cambridge University Press:  17 August 2012

Ignacio Ferreras*
Affiliation:
Mullard Space Science Laboratory, University College London Holmbury St Mary, Dorking, Surrey RH5 6NT, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Extracting star formation histories from spectra is a process plagued by numerous degeneracies among the parameters that contribute to the definition of the underlying stellar populations. Traditional approaches to overcome such degeneracies involve carefully defined line strength or spectral fitting procedures. However, all these methods rely on comparisons with population synthesis models. This paper illustrates alternative approaches based on the statistical properties of the information that can be extracted from uniformly selected samples of observed spectra, without any prior reference to modelling. Such methods are more useful with large datasets, such as surveys, where the information from thousands of spectra can be exploited to classify galaxies. An illustrative example is presented on the classification of early-type galaxies with optical spectra from the Sloan Digital Sky Survey.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abdalla, F. B., Mateus, A., Santos, W. A., Sodrè, L., Ferreras, I., & Lahav, O. 2008, MNRAS, 387, 945CrossRefGoogle Scholar
Cid Fernandes, R., Gu, Q., Melnick, J., Terlevich, E., Terlevich, R., Kunth, D., Rodrigues Lacerda, R., & Joguet, B. 2004, MNRAS, 355, 273CrossRefGoogle Scholar
Ferreras, I., Pasquali, A., de Carvalho, R. R., de la Rosa, I. G., & Lahav, O. 2006, MNRAS, 370, 828CrossRefGoogle Scholar
Hyvärinen, A., Karhunen, J., & Oja, E., Independent Component Analysis, 2001, Wiley.CrossRefGoogle ScholarPubMed
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 41CrossRefGoogle Scholar
Rogers, B., Ferreras, I., Lahav, O., Bernardi, M., Kaviraj, S., & Yi, S. K. 2007, MNRAS, 382, 750CrossRefGoogle Scholar
Rogers, B., Ferreras, I., Pasquali, A., Bernardi, M., Lahav, O., & Kaviraj, S. 2010, MNRAS, 405, 329Google Scholar
Kaviraj, S. et al. 2007, ApJ Supp. Ser., 173, 619CrossRefGoogle Scholar
Madgwick, D., Somerville, R., Lahav, O., & Ellis, R. 2003, MNRAS, 343, 871CrossRefGoogle Scholar
Ocvirk, P., Pichon, C., Lançon, A., & Thiébaut, E. 2006, MNRAS, 365, 46CrossRefGoogle Scholar
Panter, B., Heavens, A. F., & Jimenez, R. 2003, MNRAS, 343, 1145CrossRefGoogle Scholar
Ronen, S., Aragón-Salamanca, A., & Lahav, O. 1999, MNRAS, 303, 284CrossRefGoogle Scholar
Sánchez Almeida, J., Aguerri, J. A. L., Muñoz-Tuñón, C., & Huertas-Company, M., 2011, ApJ, 735, 125CrossRefGoogle Scholar
Slonim, N., Somerville, R., Tishby, N., & Lahav, O. 2001, MNRAS, 323, 270CrossRefGoogle Scholar
Tsalmantza, P. et al. 2009, A& A, 504, 1071Google Scholar
Wild, V. & Hewett, P. C. 2005, MNRAS, 358, 1083CrossRefGoogle Scholar
Yip, C. W. et al. 2004, AJ, 128, 2603CrossRefGoogle Scholar
York, D. G. et al. 2000, AJ, 120, 1579CrossRefGoogle Scholar