Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:39:28.189Z Has data issue: false hasContentIssue false

Bars in Cuspy Dark Halos

Published online by Cambridge University Press:  01 June 2008

John Dubinski
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada email: [email protected]
Ingo Berentzen
Affiliation:
Astronomisches Rechen-Institut, Mönchhofstr. 12-14 69120, Heidelberg, Germany email: [email protected]
Isaac Shlosman
Affiliation:
JILA, University of Colorado, Boulder, CO 80309-0440, USA Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine the bar instability in models with an exponential disk and a cuspy NFW-like dark matter (DM) halo inspired by cosmological simulations. Bar evolution is studied as a function of numerical resolution in a sequence of models spanning 104 – 108 DM particles - including a multi-mass model with an effective resolution of 1010. The goal is to find convergence in dynamical behaviour. We characterize the bar growth, the buckling instability, pattern speed decay through resonant transfer of angular momentum, and possible destruction of the DM halo cusp. Overall, most characteristics converge in behaviour for halos containing more than 107 particles in detail. Notably, the formation of the bar does not destroy the density cusp in this case. These higher resolution simulations clearly illustrate the importance of discrete resonances in transporting angular momentum from the bar to the halo.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Athanassoula, E. 2002, ApJ (Letters), 569, L83CrossRefGoogle Scholar
Binney, J. & Spergel, D. 1982, ApJ, 252, 308Google Scholar
Debattista, V. P. & Sellwood, J. A. 1998, ApJ (Letters), 493, L5+Google Scholar
Debattista, V. P. & Sellwood, J. A. 2000, ApJ, 543, 704Google Scholar
Dubinski, J. 1996, New Astronomy, 1, 133Google Scholar
Dubinski, J., Berentzen, I., & Shlosman, I. 2008, in prep.Google Scholar
Hernquist, L. & Weinberg, M. D. 1992, ApJ, 400, 80Google Scholar
Holley-Bockelmann, K., Weinberg, M., & Katz, N. 2005, MNRAS, 363, 991Google Scholar
Jogee, S., et al. 2004, ApJ (Letters), 615, L105Google Scholar
Knapen, J. H., Shlosman, I., & Peletier, R. F. 2000, ApJ, 529, 93CrossRefGoogle Scholar
Lynden-Bell, D. & Kalnajs, A. J. 1972, MNRAS, 157, 1Google Scholar
Martinez-Valpuesta, I. & Shlosman, I. 2004, ApJ (Letters), 613, L29Google Scholar
Martinez-Valpuesta, I., Shlosman, I., & Heller, C. 2006, ApJ, 637, 214Google Scholar
O'Neill, J. K. & Dubinski, J. 2003, MNRAS, 346, 251Google Scholar
Sellwood, J. A. 1980, A&A, 89, 296Google Scholar
Sellwood, J. A. 2003, ApJ, 587, 638Google Scholar
Sheth, K. et al. 2008, ApJ, 675, 1141Google Scholar
Tremaine, S. & Weinberg, M. D. 1984, MNRAS, 209, 729Google Scholar
Weinberg, M. D. 1985, MNRAS, 213, 451Google Scholar
Weinberg, M. D. & Katz, N. 2002, ApJ, 580, 627Google Scholar
Weinberg, M. D. & Katz, N. 2007a, MNRAS, 375, 425Google Scholar
Weinberg, M. D. & Katz, N. 2007b, MNRAS, 375, 460Google Scholar
Widrow, L. M. & Dubinski, J. 2005, ApJ, 631, 838Google Scholar