Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:42:54.321Z Has data issue: false hasContentIssue false

AutoTAB: An Algorithm to Track Bipolar Magnetic Regions and Initial results from the Tracked BMRs

Published online by Cambridge University Press:  23 December 2024

Anu Sreedevi*
Affiliation:
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
Bibhuti Kumar Jha
Affiliation:
Southwest Research Institute, Boulder 80302, USA
Bidya Binay Karak
Affiliation:
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
Dipankar Banerjee
Affiliation:
Aryabhatta Research Institute of Observational Sciences, Nainital 263002, Uttarakhand, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

AutoTAB is a state-of-the-art, fully automatic algorithm that tracks the Bipolar Magnetic Regions (BMRs) in magnetogram observations. AutoTAB employs identified BMR regions from Line-of-Sight magnetograms from MDI and HMI (1996–2022) to track the BMRs through their evolution on the nearside of the Sun. AutoTAB enables us to create a comprehensive and unique catalog of tracked information of 9232 BMRs in the mentioned time period. This dataset is used to study the collective statistical properties of BMRs and particularly to identify the correct theory for the BMR formation. Here, we discuss the algorithm’s functionality and the initial findings obtained from the AutoTAB BMRs catalog.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Babcock, H. W. 1961, The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. ApJ, 133, 572.CrossRefGoogle Scholar
Biswas, A., Karak, B. B., & Kumar, P. 2023, Exploring the reliability of polar field rise rate as a precursor for an early prediction of solar cycle. MNRAS, 526(3), 39944003.CrossRefGoogle Scholar
Dasi–Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R., & Peñuela, T. 2010, Sunspot group tilt angles and the strength of the solar cycle. A&A, 518, A7.Google Scholar
D’Silva, S. & Choudhuri, A. R. 1993, A theoretical model for tilts of bipolar magnetic regions. A&A, 272, 621.Google Scholar
Fan, Y., Fisher, G. H., & McClymont, A. N. 1994, Dynamics of Emerging Active Region Flux Loops. ApJ, 436, 907.CrossRefGoogle Scholar
Golubeva, E. M., Biswas, A., Khlystova, A. I., Kumar, P., & Karak, B. B. 2023, Probing the variations in the timing of the Sun’s polar magnetic field reversals through observations and surface flux transport simulations. MNRAS, 525(2), 17581768.CrossRefGoogle Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, The Magnetic Polarity of Sun-Spots. ApJ, 49, 153.CrossRefGoogle Scholar
Jha, B. K., Karak, B. B., Mandal, S., & Banerjee, D. 2020, Magnetic Field Dependence of Bipolar Magnetic Region Tilts on the Sun: Indication of Tilt Quenching. ApJ Letters, 889(1), L19.CrossRefGoogle Scholar
Jha, B. K., Priyadarshi, A., Mandal, S., Chatterjee, S., & Banerjee, D. 2021, Measurements of Solar Differential Rotation Using the Century Long Kodaikanal Sunspot Data. Solar Phys., 296(1), 25.CrossRefGoogle Scholar
Karak, B. B. 2020, Dynamo Saturation through the Latitudinal Variation of Bipolar Magnetic Regions in the Sun. ApJ Letters, 901(2), L35.CrossRefGoogle Scholar
Karak, B. B. 2023, Models for the long-term variations of solar activity. Living Reviews in Solar Physics, 20(1), 3.CrossRefGoogle Scholar
Karak, B. B. & Brandenburg, A. 2016, Is the Small-scale Magnetic Field Correlated with the Dynamo Cycle? ApJ, 816(1), 28.Google Scholar
Karak, B. B. & Miesch, M. 2017, Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model. ApJ, 847, 69.CrossRefGoogle Scholar
Karak, B. B. & Miesch, M. 2018, Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model. ApJ Letters, 860, L26.CrossRefGoogle Scholar
Kosovichev, A. G. & Stenflo, J. O. 2008, Tilt of Emerging Bipolar Magnetic Regions on the Sun. ApJ Letters, 688(2), L115.CrossRefGoogle Scholar
Leighton, R. B. 1964, Transport of Magnetic Fields on the Sun. ApJ, 140, 1547.CrossRefGoogle Scholar
Mordvinov, A. V., Karak, B. B., Banerjee, D., Golubeva, E. M., Khlystova, A. I., Zhukova, A. V., & Kumar, P. 2022, Evolution of the Sun’s activity and the poleward transport of remnant magnetic flux in Cycles 21-24. MNRAS, 510(1), 13311339.CrossRefGoogle Scholar
Muñoz-Jaramillo, A., Werginz, Z., Vargas–Acosta, J. P., DeLuca, M., Windmueller, J. C., Zhang, J., Longcope, D., Lamb, D., DeForest, C., Vargas-Domnguez, S., Harvey, J., & Martens, P. The best of both worlds: Using automatic detection and limited human supervision to create a homogenous magnetic catalog spanning four solar cycles. In 2016 IEEE International Conference on Big Data (Big Data 2016, pp. 31943203.CrossRefGoogle Scholar
Parker, E. N. 1955, The Formation of Sunspots from the Solar Toroidal Field. ApJ, 121, 491.CrossRefGoogle Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T. D., Title, A., Wolfson, C. J., Zayer, I., & Engineering Team, MDI 1995, The Solar Oscillations Investigation - Michelson Doppler Imager. Solar Phys., 162, 129188.CrossRefGoogle Scholar
Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., Liu, Y., Duvall, T. L., Zhao, J., Title, A. M., Schrijver, C. J., Tarbell, T. D., & Tomczyk, S. 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Phys., 275(1-2), 207227.CrossRefGoogle Scholar
Sreedevi, A., Jha, B. K., Karak, B. B., & Banerjee, D. 2023, AutoTAB: Automatic Tracking Algorithm for Bipolar Magnetic Regions. ApJ Supplement, 268(2), 58.CrossRefGoogle Scholar
Sreedevi, A. B. & Jha, B. K. 2023, Automatic Algorithm for Tracking Bipolar Magnetic Regions. IAU Symposium, 372, 9799.Google Scholar
Stenflo, J. O. & Kosovichev, A. G. 2012, Bipolar Magnetic Regions on the Sun: Global Analysis of the SOHO/MDI Data Set. ApJ, 745(2), 129.CrossRefGoogle Scholar
Tlatov, A. G. & Pevtsov, A. A. 2014, Bimodal Distribution of Magnetic Fields and Areas of Sunspots. Solar Phys., 289, 11431152.CrossRefGoogle Scholar
Wang, Y. M. & Sheeley, N. R., J. 1991, Magnetic Flux Transport and the Sun’s Dipole Moment: New Twists to the Babcock–Leighton Model. ApJ, 375, 761.CrossRefGoogle Scholar