Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T23:39:27.703Z Has data issue: false hasContentIssue false

The Asymmetric Outflow of RS Ophiuchi

Published online by Cambridge University Press:  17 January 2013

S. Mohamed
Affiliation:
Argelander Institut für Astronomie, Auf dem Hügel 71, Bonn D-53121, Germany email: [email protected]
R. Booth
Affiliation:
Department of Astrophysics, University of Oxford, Oxford OX1 3RH email: [email protected], [email protected]
Ph. Podsiadlowski
Affiliation:
Department of Astrophysics, University of Oxford, Oxford OX1 3RH email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

RS Ophiuchi (RS Oph) is a symbiotic binary consisting of a hot white dwarf accreting from the slow, dense stellar wind of a cool, red giant companion. The system belongs to, and is one of the best studied examples of, an even smaller subclass of binaries known as recurrent novae in which the white dwarf undergoes repeated thermonuclear outbursts. We present 3D smoothed particle hydrodynamics (SPH) models of mass transfer from the red giant to the white dwarf, followed by a nova outburst. We show that the outflow in the former is strongly concentrated towards the binary orbital plane. The nova ejecta is thus constrained in the equatorial directions, resulting in a bipolar outflow. The white dwarf in RS Oph is thought to be close to the Chandrasekhar mass, making the system a likely Type Ia supernova candidate. We discuss the role that such a highly structured circumstellar medium will play in the evolution of the supernova remnant.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bode, M. F., Harman, D. J., O'Brien, T. J., Bond, H. E., et al. 2007, ApJL, 665, L63CrossRefGoogle Scholar
Bode, M. F. 2010, Astron. Nachr., 331, 160Google Scholar
Brandi, E., Quiroga, C., Mikołajewska, J., Ferrer, O. E., & García, L. G. 2009, A&A, 497, 815Google Scholar
Chesneau, O., Meilland, A., Banerjee, D. P. K., Le Bouquin, J.-B., et al. 2011, A&A, 534, L11Google Scholar
García-Senz, D., Badenes, C., & Serichol, N. 2012, ApJ, 745, 75Google Scholar
Mohamed, S. 2010, Ph.D. thesis, Univ. OxfordGoogle Scholar
Mohamed, S., Mackey, J., & Langer, N. 2011, ArXiv e-printsGoogle Scholar
Nomoto, K., Thielemann, F.-K., & Yokoi, K. 1984, ApJ, 286, 644Google Scholar
Patat, F., Chandra, P., Chevalier, R., Justham, S., et al. 2007, Science, 317, 924CrossRefGoogle Scholar
Patat, F., Chugai, N. N., Podsiadlowski, P., Mason, E., et al. 2011, A&A, 530, A63Google Scholar
Price, D. J. 2007, PASA, 24, 159Google Scholar
Price, D. J. 2012, Journal of Computational Physics, 231, 759Google Scholar
Ribeiro, V. A. R. M., Bode, M. F., Darnley, M. J., Harman, D. J., et al. 2009, ApJ, 703, 1955Google Scholar
Rosswog, S. 2009, NewAR, 53, 78Google Scholar
Shara, M. M., Zurek, D. R., Williams, R. E., Prialnik, D.et al. 1997, AJ, 114, 258Google Scholar
Simon, J. D., Gal-Yam, A., Gnat, O., & Quimby, R. M. 2009, ApJ, 702, 1157CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105Google Scholar
Springel, V. 2010, ARA&A, 48, 391Google Scholar
Sternberg, A., Gal-Yam, A., Simon, J. D., Leonard, D. C.et al. 2011, Science, 333, 856CrossRefGoogle Scholar
Walder, R., Folini, D., & Shore, S. N. 2008, A&A, 484, L9Google Scholar
Yaron, O., Prialnik, D., Shara, M. M., & Kovetz, A. 2005, ApJ, 623, 398Google Scholar