Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T19:59:10.213Z Has data issue: false hasContentIssue false

Astrometry with ALMA: a giant step from 0.1 arcsecond to 0.1 milliarcsecond in the sub-millimeter

Published online by Cambridge University Press:  01 October 2007

J.-F. Lestrade*
Affiliation:
Observatoire de Paris-CNRS77 av. Denfert Rochereau, F75014, Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss astrometric capabilities of the future interferometer ALMA that will be located at a high altitude site (5000m) in Northern Chile to operate in the sub-millimeter range. In this paper, we estimate the astrometric precision of ALMA to be ~0.18 milliarcsecond at the optimum observing frequency of 345 GHz from an error budget including the thermal noise and the systematic errors caused by uncertainties in antenna coordinates, reference source coordinates, Earth orientation parameters, dry atmosphere parameter and by phase fluctuations due to moisture above the site. We briefly discuss three applications: first, astrometric search of exoplanets around 446 nearby stars detectable by ALMA; second, proper motions and parallaxes of pre-stellar cores and protostars; third, the rotation rate of the debris disk around ε Eri to test the theory of dust trapping in mean motion resonances with unseen planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

André, P., Ward-Thompson, D., & Barsony, M., 1993, ApJ, 406, 122CrossRefGoogle Scholar
Carilli, C. L. & Holdaway, M. A., 1999, Radio Sc., 34, 817CrossRefGoogle Scholar
Conway, J., 2004, Alma Memo Series, memo#503Google Scholar
Greaves, J. S., et al. , 2005, ApJ, 619, L187CrossRefGoogle Scholar
Holdaway, M. A. & Pardo, J. R., 2001, Alma Memo Series, memo#404Google Scholar
Holdaway, M. A., Carilli, C., Weiss, A., & Bertoldi, F., 2005, Alma Memo Series, memo#543Google Scholar
Lestrade, J.-F., Rogers, A. E. E., Withney, A. R., et al. 1990, AJ, 99, 1663CrossRefGoogle Scholar
Lestrade, J.-F., 2003, ASP Conf. Ser., 294, 587Google Scholar
Owen, F. N. 1982, Alma Memo Series, memo#1Google Scholar
Pérez-Beaupuits, J. P., Rivera, R. C., & Nyman, L.A, 2005, Alma Memo Series, memo#542Google Scholar
Poulton, C. J., Greaves, J. S., & Cameron, A. C., 2006, MNRAS, 372, 53.CrossRefGoogle Scholar
Pradel, N., Charlot, P., & Lestrade, J.-F., 2006, A&A, 452, 1099.Google Scholar
Radford, S., Reiland, G., & Shillus, B., 1996, PASP, 108, 441CrossRefGoogle Scholar
Shapiro, I. I., Wittels, J. J., & Counselman, C. C., 1979, AJ, 84, 1459CrossRefGoogle Scholar
Thompson, A. R., Moran, J. M., & Swenson, G., 1986, Interferometry ad Synthesis in Radioastronomy, publishers: John Wiley & SonsGoogle Scholar
Wiedner, M. C., Hills, R. E., Carlstrom, J. E., & Lay, O. P., 2001, ApJ, 553, 1036.CrossRefGoogle Scholar
Wright, M., 2002, Alma Memo Series, memo#427Google Scholar
Wyatt, M. C., 2003, ApJ, 598, 1321.CrossRefGoogle Scholar