Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:28:39.623Z Has data issue: false hasContentIssue false

Astrometry of Water Maser sources in the Outer Galaxy with VERA

Published online by Cambridge University Press:  07 February 2024

Hiroyuki Nakanishi*
Affiliation:
Graduate School of Science and Engineering, Kagoshima University.
Nobuyuki Sakai
Affiliation:
National Astronomical Research Institute of Thailand
Kohei Kurahara
Affiliation:
National Astronomical Observatory of Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While the rotation curve of the inner Galactic disk is well determined, study of the outer rotation curve requires observational measurements of distances and proper motions of individual sources in the Outer Galaxy. We report astrometric observation for water maser sources in the Outer Galactic disk conducted with VERA, aiming to measure the Outer Rotation Curve. We have measured annual parallaxes and proper motions for these objects. Our result was consistent with recent other works based on astrometry and classical Cepheid observations. Epicyclic frequency seems to suggest that 2 and 4 spiral mode are dominant in the inner and outer Galaxy, respectively.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baba, J., Saitoh, T. R., & Wada, K. 2013, ApJ, 763, 46 10.1088/0004-637X/763/1/46CrossRefGoogle Scholar
Bottema, R. 2003, MNRAS, 344, 358 10.1046/j.1365-8711.2003.06613.xCrossRefGoogle Scholar
Eilers, A.-C., Hogg, D. W., Rix, H.-W., et al. 2020, ApJ, 900, 186 10.3847/1538-4357/abac0bCrossRefGoogle Scholar
Fuchs, B. & Möllenhoff, C. 1999, A&A, 352, L36 Google Scholar
Fujii, M. S., Baba, J., Saitoh, T. R., et al. 2011, ApJ, 730, 109 10.1088/0004-637X/730/2/109CrossRefGoogle Scholar
Collaboration, Gaia, Katz, D., Antoja, T., et al. 2018, A&A, 616, A11 Google Scholar
Koide, N., Nakanishi, H., Sakai, N., et al. 2019, PASJ, 71, 113 10.1093/pasj/psz101CrossRefGoogle Scholar
Matsuno, M., Nakagawa, A., Morita, A., et al. 2020, PASJ, 72, 56 10.1093/pasj/psaa022CrossRefGoogle Scholar
Mróz, P., Udalski, A., Skowron, D. M., et al. 2019, ApJL, 870, L10 10.3847/2041-8213/aaf73fCrossRefGoogle Scholar
Nakanishi, H., Sakai, N., Kurayama, T., et al. 2015, PASJ, 67, 68 10.1093/pasj/psv012CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2019, ApJ, 885, 131 10.3847/1538-4357/ab4a11CrossRefGoogle Scholar
Sakai, N., Honma, M., Nakanishi, H., et al. 2012, PASJ, 64, 108 10.1093/pasj/64.5.108CrossRefGoogle Scholar
Sakai, N., Nakanishi, H., Matsuo, M., et al. 2015, PASJ, 67, 69 10.1093/pasj/psv049CrossRefGoogle Scholar
Collaboration, VERA, Hirota, T., Nagayama, T., et al. 2020, PASJ, 72, 50 10.1093/pasj/psaa018CrossRefGoogle Scholar
Xu, Y., Hao, C. J., Liu, D. J., et al. 2023, ApJ, 947, 54 10.3847/1538-4357/acc45cCrossRefGoogle Scholar