Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-03T19:20:41.588Z Has data issue: false hasContentIssue false

Astrometric surveys in the Gaia era

Published online by Cambridge University Press:  07 March 2018

Norbert Zacharias*
Affiliation:
U.S. Naval Observatory, 3450 Mass.Ave.NW Washington DC 20392, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Gaia first data release (DR1) already provides an almost error free optical reference frame on the milli-arcsecond (mas) level allowing significantly better calibration of ground-based astrometric data than ever before. Gaia DR1 provides positions, proper motions and trigonometric parallaxes for just over 2 million stars in the Tycho-2 catalog. For over 1.1 billion additional stars DR1 gives positions. Proper motions for these, mainly fainter stars (G ≥ 11.5) are currently provided by several new projects which combine earlier epoch ground-based observations with Gaia DR1 positions. These data are very helpful in the interim period but will become obsolete with the second Gaia data release (DR2) expected in April 2018. The era of traditional, ground-based, wide-field astrometry with the goal to provide accurate reference stars has come to an end. Future ground-based astrometry will fill in some gaps (very bright stars, observations needed at many or specific epochs) and mainly will go fainter than the Gaia limit, like the PanSTARRS and the upcoming LSST surveys.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abbott, T. et al. (Dark Energy Survey Collaboration) 2016, arXiv:1601.00329v3Google Scholar
Akhmetov, V. S., Federov, P. N., Velichko, A. B., & Shulga, V. M. 2017, in press with MN Google Scholar
Altmann, M. et al. 2017, arXiv:1701.02629Google Scholar
Bellm, E. C. 2014, arXiv: 1410.8185Google Scholar
Chambers, K. C., Magnier, E. A. et al. 2017, arXiv:1612.05560Google Scholar
Eichhorn, H. 1974, Astronomy of Star Positions, Frederick Ungar Publishing, New York Google Scholar
Eichhorn, H. & Williams, C. A., 1963, AJ, 68, 221 Google Scholar
European Space Agency, 1997, SP 1200Google Scholar
Finch, C. T. & Zacharias, N., 2016, AJ, 151, 160 Google Scholar
Gunn, J. E.,et al. 2006, AJ, 131, 2332 Google Scholar
Høg, E., Fabricius, C., Makarov, V. V. et al. 2000, A&A, 335, 27; Vizier catalog I/259Google Scholar
Ivantsov, A. 2017, this proceedings asteroid masses from close encountersGoogle Scholar
Keller, S. C. et al. 2007, Pub. Asron. Soc. Australia, 24, 1 Google Scholar
Lindegren, L., Lammers, U., Bastian, U. et al. 2016, A&A, 595, A4 Google Scholar
Makarov, V. Frouard, J., Berghea, C. T. et al. 2017, ApJ, 835, 30 Google Scholar
Munn, J. A., Monet, D. G., Levine, S. E. et al. 2004, AJ, 127, 3034 Google Scholar
Monet, D. et al. 2003, AJ, 125, 984 Google Scholar
Petrov, L. 2017, this proceedings Google Scholar
Robert, V., De Cuyper, J. P., Arlot, J. E. et al. 2011, MNRAS, 415, 701 Google Scholar
Roeser, S., Demleitner, M., & Schilback, E., 2010, AJ, 139, 2440 Google Scholar
Skrutskie, M. F., Cutri, R. M., Stiening, R. et al. 2006, AJ, 131, 1163 Google Scholar
Tian, H.-J. et al. 2017, arXiv:1703.06278Google Scholar
van Altena, W. F. (Editor) 2013, Astrometry for Astrophysics, Cambridge University Press Google Scholar
van Leeuwen, F. 2007, A&A 474, 653; Vixier catalog I/311Google Scholar
Zacharias, N., Urban, S. E., Zacharias, M. I. et al. 2004, AJ, 127, 3043 Google Scholar
Zacharias, N., Finch, C. T., Girard, T. M. et al. 2013, AJ, 145, 44 Google Scholar
Zacharias, N., Finch, C., & Frouard, J., 2017, AJ, 153, 166 Google Scholar