Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:11:35.606Z Has data issue: false hasContentIssue false

Astrometric and timing effects of gravitational waves

Published online by Cambridge University Press:  06 January 2010

Bernard F. Schutz*
Affiliation:
Albert Einstein Institute, D-14424 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gravitational wave detection can be done by precision timing of millisecond pulsars, and (with less likelihood) by precision astrometry on distant objects whose light or radio waves pass through gravitational waves on their way to our observatories. Underlying both of these is the relatively simple theory of light propagation in spacetimes with gravitational waves, which is also the basis of interferometric gravitational wave detectors. I review this theory and apply it to the timing and astrometric methods of detection. While pulsar timing might even be the first way that we directly detect gravitational waves, light deflection by gravitational waves seems out of reach.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

LSC (2009), Ligo scientific collaboration home page, URL http://ligo.org/.Google Scholar
Abbott, B. P., Abbott, R., Adhikari, R. et al. , Reports on Progress in Physics 72, 076901 (2009).CrossRefGoogle Scholar
Grote, H. and the LIGO Scientific Collaboration, Classical and Quantum Gravity 25, 114043 (2008).CrossRefGoogle Scholar
Acernese, F., Alshourbagy, M., Amico, P., Antonucci, F., Aoudia, S., Astone, P., Avino, S., Baggio, L., Barone, F., Barsotti, L. et al. , Journal of Physics Conference Series 120, 032007 (2008).CrossRefGoogle Scholar
LCGT (2009), Large-scale cryogenic gravitational-wave telescope project, URL http://www.icrr.u-tokyo.ac.jp/gr/LCGT.html.Google Scholar
ETP (2009), Einstein telescope, URL http://www.et-gw.eu/.Google Scholar
LISA (2009), Laser interferometer space antenna, URL http://www.esa.int/esaSC/120376_index_0_m.html.Google Scholar
Kawamura, S., Nakamura, T., Ando, M., Seto, N., Tsubono, K. et al. , Class. Quantum Gray. 23, S125 (2006), URL http://stacks.iop.org/0264-9381/23/S125.CrossRefGoogle Scholar
Jenet, F., Hobbs, G., van Straten, W., Manchester, R., Bailes, M., Verbiest, J., Edwards, R., Hotan, A., Sarkissian, J., and Ord, S., Astrophys. J. (2006), astro-ph/0609013.Google Scholar
Carilli, C. and Rawlings, S., New Astronomy Reviews 48 (2004).Google Scholar
Schutz, B. F., A First Course in General Relativity, 2nd edition (Cambridge University Press, 2009).CrossRefGoogle Scholar
Jenet, F., Lommen, A., Larson, S., and Wen, L., Astrophys. J. 606, 799 (2004), arXiv:astro-ph/0310276.CrossRefGoogle Scholar
Estabrook, F. B. and Wahlquist, H. D., Gen. Rel. & Grav. 6 (1975).CrossRefGoogle Scholar
Damour, T. and Esposito-Farèse, G., Phys. Rev. D 58, 044003 (1998), arXiv:gr-qc/9802019.CrossRefGoogle Scholar
Kopeikin, S. M., Schäfer, G., Gwinn, C. R., and Eubanks, T. M., Phys. Rev. D 59, 084023 (1999), arXiv:gr-qc/9811003.CrossRefGoogle Scholar
Kopeikin, S. M. and Schafer, G., Phys. Rev. D 60, 124002 (1999), arXiv:gr-qc/9902030.CrossRefGoogle Scholar
Blanchet, L., Kopeikin, S., and Schäfer, G., in Gyros, Clocks, Interferometers . . .: Testing Relativistic Gravity in Space, edited by Lammerzahl, C., Everitt, C. W. F., and Hehl, F. W. (2001), vol. 562 of Lecture Notes in Physics, Berlin Springer Verlag, pp. 141–+.Google Scholar
Kopeikin, S. and Korobkov, P., ArXiv General Relativity and Quantum Cosmology e-prints (2005), arXiv:gr-qc/0510084.Google Scholar