Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T18:49:03.129Z Has data issue: false hasContentIssue false

Astrochemical models of water

Published online by Cambridge University Press:  27 October 2016

Yuri Aikawa*
Affiliation:
Center for Computer Sciences, University of Tsukuba email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We will review the chemical reaction network models of water and its D/H ratio coupled with the dynamics of star formation. Infrared observations show that water ice is abundant even in molecular clouds with relatively low visual extinction (~ 3 mag), which indicates that water ice is formed in early stage of molecular clouds. We thus start from a possible formation site of molecular clouds, i.e. the converging flow of diffuse gas. Then we proceed to dense cloud cores and its gravitational collapse, during which a significant deuterium enrichment occurs. The gas and ice accrete onto the circumstellar disks, which evolve to protoplanetary disks in T Tauri phase. If the disks are turbulent, water could be photodissociated in the disk surface and re-formed in deeper layers. The cycle continues until the dust grains with ice mantle are decoupled from the turbulence and settle to the midplane. The water D/H ratio could thus vary within the disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aikawa, Y. & Herbst, E. 1999, ApJ 526, 314 Google Scholar
Aikawa, Y., Wakelam, V., Hersant, F., Garrod, R. T., & Herbst, E. 2012a, ApJ 760, 40 Google Scholar
Aikawa, Y., Kamuro, D., Sakon, I., Terada, H., Noble, J. A., Phntoppidan, K. M., Fraser, H. J., Tamura, M., Kandori, R., Kawamura, A. & Ueno, M. 2012b, A&A 538, A57 Google Scholar
Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J. J., Bieler, A., Bochsler, P., Briois, C., Calmonte, U., Combi, M., De Keyser, J., Eberhardt, P., Fiethe, B., Fuselier, S., Gasc, S., Gombosi, T. I., Hansen, K. C., Hassig, M., Jackel, A., Kopp, E., Korth, A., LeRoy, L., Mall, U., Marty, B., Mousis, O., Neefs, E., Owen, T., Reme, H., Rubin, M., Semon, T., Tzou, C.-Y., Waite, H., & Wurz, P. 2015, Science 347(6220), 1261952 Google Scholar
Bergin, E. A., Hartmann, L. W., Raymond, J. C., & Ballesteros-Paredes, J. 2004, ApJ 612, 921 Google Scholar
Ceccarelli, C., Caselli, P., Herbst, E., Tielens, A. G. G. M., & Caux, E. 2007, Protostars and Planets V 47 Google Scholar
Cleeves, L. I., Bergin, E. A., Alexander, C. M. O.'D., Du, F., Graninger, D., Öberg, K. I., & Harries, T. J. 2014, Science 345, 1590 Google Scholar
Coutens, A., Vastel, C., Cabrit, S., Codella, C., Kristensen, L. E., Ceccarelli, C., van Dishoeck, E. F., Boogert, A. C. A., Bottinelli, S., Castets, A., Caux, E., Comito, C., Demyk, K., Herpin, F., Lefloch, B., McCoey, C., Mottram, J. C., Parise, B., Taquet, V., van der Tak, F. F. S., Visser, R., & Yildiz, U. A. 2013, A&A 560, A39 Google Scholar
Dartois, E., Thi, W.-F., Geballe, T. R., Deboffle, D., d'Hendecourt, L., & van Dishoeck, E. F. 2003, A&A 399, 1009 Google Scholar
Furuya, K., Aikawa, Y., Tomida, K., Matsumoto, T., Saigo, K., Tomisaka, K., Hersant, F., & Wakelam, V. 2012, ApJ 758, 86 Google Scholar
Furuya, K., Aikawa, Y., Nomura, H., Hersant, F., & Wakelam, V. 2013, ApJ 779, 11 Google Scholar
Hartogh, P., Lis Dariusz, C., Bockelee-Morvan, D., de Val-Borro, M., Biver, N., Küppers, M., Emprechtinger, M., Bergin, E. A., Crovisier, J., Rengel, M., Moreno, R., Szutowicz, S., & Blake, G. A. 2011, Nature 478, 218 Google Scholar
Hassel, G. E., Herbst, E., & Bergin, E. A. 2010, A&A 515, 66 Google Scholar
Hidaka, H., Watanabe, N., & Kouchi, A. 2009, ApJ 702, 291 Google Scholar
Hincelin, U., Wakelam, V., Commerçon, B., Hersant, F. & Guilloteau, S. 2013, ApJ 775, 44 Google Scholar
Hugo, E., Asvany, O., & Schlemmer, S. 2009, J. of Chem. Phys. 130, 164302 Google Scholar
Inoue, T. & Inutsuka, S. 2012, ApJ 759, 35 Google Scholar
Inutsuka, S., Inoue, T., Iwasaki, K., & Hosokawa, T. 2015, A&A 580, 49 Google Scholar
Lécuyer, C., Gillet, Ph., & Robert, F. 1998, Chem. Geol. 145, 249 Google Scholar
Linksy, J. L. 2003, SSRv 106, 49 Google Scholar
Mumma, M. J. & Charnley, S. B. 2011, ARAA 49, 471 Google Scholar
Parise, B., Simon, T., Caux, E., Dartois, E., Ceccarelli, C., Rayner, J., & Tielens, A. G. G. M. 2003, A&A 410, 897 Google Scholar
Persson, M. V., Jørgensen, J. K., van Dishoeck, E. F., & Harsono, D. 2014, A&A 563, A74 Google Scholar
Roueff, E., Lis, D. C., can der Tak, F. F. S., Gerin, M., & Goldsmith, P. F. 2005, A&A 438, 585 Google Scholar
Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2009, ApJ 702, 1025 Google Scholar
Taquet, V., Charnley, S. B. & Sipilä, Olli 2014, ApJ 791, 1 Google Scholar
Visser, R., Doty, S. D., & van Dishoeck, E. F. 2011, A&A 534, 132 Google Scholar
Wakelam, V., Vastel, C., Aikawa, Y., Coutens, A., Bottinelli, S., & Caux, E. 2014, MNRAS 445, 2854 Google Scholar
Whittet, D. C. 2010, ApJ 710, 1009 Google Scholar
Willacy, K. 2007, ApJ 660, 441 Google Scholar
Willacy & Woods 2009, ApJ 703, 479 Google Scholar