Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T18:12:42.041Z Has data issue: false hasContentIssue false

ASTEP South: a first photometric analysis

Published online by Cambridge University Press:  30 January 2013

N. Crouzet
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA email: [email protected]
T. Guillot
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
D. Mékarnia
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
J. Szulágyi
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary
L. Abe
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
A. Agabi
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
Y. Fanteï-Caujolle
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
I. Gonçalves
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
M. Barbieri
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
F.-X. Schmider
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
J.-P. Rivet
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
E. Bondoux
Affiliation:
Concordia Station, Dome C, Antarctica
Z. Challita
Affiliation:
Concordia Station, Dome C, Antarctica
C. Pouzenc
Affiliation:
Concordia Station, Dome C, Antarctica
F. Fressin
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
F. Valbousquet
Affiliation:
Optique et Vision, 6 bis avenue de l'Estérel, BP 69, 06162 Juan-Les-Pins, France
A. Blazit
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
S. Bonhomme
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
J.-B. Daban
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
C. Gouvret
Affiliation:
Laboratoire Lagrange, UMR 7293 UNS-CNRS-OCA, Boulevard de l'Observatoire, BP 4229, 06304 Nice Cedex 4, France
D. Bayliss
Affiliation:
Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia
G. Zhou
Affiliation:
Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ASTEP project aims at detecting and characterizing transiting planets from Dome C, Antarctica, and qualifying this site for photometry in the visible. The first phase of the project, ASTEP South, is a fixed 10 cm diameter instrument pointing continuously towards the celestial South Pole. Observations were made almost continuously during 4 winters, from 2008 to 2011. The point-to-point RMS of 1-day photometric lightcurves can be explained by a combination of expected statistical noises, dominated by the photon noise up to magnitude 14. This RMS is large, from 2.5 mmag at R = 8 to 6% at R = 14, because of the small size of ASTEP South and the short exposure time (30 s). Statistical noises should be considerably reduced using the large amount of collected data. A 9.9-day period eclipsing binary is detected, with a magnitude R = 9.85. The 2-season lightcurve folded in phase and binned into 1,000 points has a RMS of 1.09 mmag, for an expected photon noise of 0.29 mmag. The use of the 4 seasons of data with a better detrending algorithm should yield a sub-millimagnitude precision for this folded lightcurve. Radial velocity follow-up observations reveal a F-M binary system. The detection of this 9.9-day period system with a small instrument such as ASTEP South and the precision of the folded lightcurve show the quality of Dome C for continuous photometric observations, and its potential for the detection of planets with orbital periods longer than those usually detected from the ground.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Aristidi, E., Agabi, A., Vernin, J., et al., 2003, A&A, 406, L19Google Scholar
Aristidi, E., Agabi, K., Azouit, M., et al. 2005, A&A, 430, 739Google Scholar
Aristidi, E., Fossat, E., Agabi, A., et al. 2009, A&A, 499, 955Google Scholar
Ashley, M. C. B., Lawrence, J. S., Storey, J. W. V., & Tokovinin, A. 2005, EAS Publications Series, 14, 19Google Scholar
Crouzet, N., Guillot, T., Fressin, F., & Blazit, A., the ASTEP team 2007, AN, 328, 805Google Scholar
Crouzet, N., Guillot, T., Agabi, K., et al. 2010, A&A, 511: A36Google Scholar
Daban, J.-B., Gouvret, C., Guillot, T., et al. 2010, SPIE Conference Series, 7733Google Scholar
Fossat, E., Aristidi, E., Agabi, A., et al. 2010, A&A, 517, A69Google Scholar
Fressin, F., Guillot, T., Bouchy, F., et al. 2005, EAS Publications Series, 14, 309Google Scholar
Giordano, C., Vernin, J., Chadid, M., et al. 2012, PASP, 124, 494CrossRefGoogle Scholar
Kenyon, S. L., Lawrence, J. S., Ashley, M. C. B., et al. 2006, PASP, 118, 924Google Scholar
Kovács, G., Bakos, G., & Noyes, R. W. 2005, MNRAS, 356, 557Google Scholar
Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369Google Scholar
Lawrence, J. S., Ashley, M. C. B., Tokovinin, A., & Travouillon, T. 2004, Nature, 431, 278Google Scholar
Mosser, B. & Aristidi, E. 2007, PASP, 119, 127Google Scholar
Pont, F. & Bouchy, F. 2005, EAS Publications Series, 14, 155CrossRefGoogle Scholar
Rivet, J.-P., et al. 2012, IAUS288 Proceedings, these proceedingsGoogle Scholar
Wang, L., Macri, L. M., Krisciunas, K., et al. 2011, AJ, 142, 155Google Scholar
Szulágyi, J., Kovács, G., & Welch, D. L. 2009, A&A, 500, 917Google Scholar
Yuan, X., Cui, X., Liu, G., et al. 2008, Proc. SPIE, 7012, 70124GGoogle Scholar
Zhou, X., Wu, Z., Jiang, Z., et al. 2010a, Res. Astron. Astrophys., 10, 279CrossRefGoogle Scholar
Zhou, X., Fan, Z., Jiang, Z., et al. 2010b, PASP, 122, 347Google Scholar