Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T18:11:26.027Z Has data issue: false hasContentIssue false

The Assembly History of the Milky Way Nuclear Star Cluster

Published online by Cambridge University Press:  31 March 2017

A. Feldmeier-Krause
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany email: [email protected]
N. Neumayer
Affiliation:
Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany
R. Schödel
Affiliation:
Instituto de Astrofísica de Andalucía (IAA)-CSIC, E-18008 Granada, Spain
A. Seth
Affiliation:
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
P. T. de Zeeuw
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany email: [email protected] Sterrewacht Leiden, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands
C. J. Walcher
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
N. Lützgendorf
Affiliation:
ESA, Space Science Department, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
M. Kissler-Patig
Affiliation:
Gemini Observatory, 670 N. A’ohoku Place, Hilo, Hawaii, 96720, USA
M. Hilker
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany email: [email protected]
H. Kuntschner
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Within the central 10 pc of our Galaxy lies a dense cluster of stars, the nuclear star cluster. This cluster forms a distinct component of our Galaxy. Nuclear star clusters are common objects and are detected in ~ 75% of nearby galaxies. It is, however, not fully understood how nuclear star clusters form. The Milky Way nuclear star cluster is the closest of its kind. At a distance of only 8 kpc we can spatially resolve its stellar populations and kinematics much better than in external galaxies. This makes the Milky Way nuclear star cluster the perfect local reference object for understanding the structure and assembly history of nuclear star clusters in general. There are of the order of 107 stars within the central 10 pc of the Galactic center. Most of these stars are several Gyr old late-type stars. However, there are also more than 100 hot early-type stars in the central parsec of the Milky Way, with ages of only a few Myr. Beyond a projected distance of 0.5 pc of the Galactic center, the density of young stars was largely unknown, since only very few spectroscopic observations existed so far. We covered the central >4 pc2 (0.75 sq.arcmin) of the Galactic center using the integral-field spectrograph KMOS (VLT). We extracted more than 1,000 spectra from individual stars and identified >20 new early-type stars based on their spectra. We studied the spatial distribution of the different populations and their kinematics to put constraints on the assembly history of the Milky Way nuclear star cluster.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Antonini, F. 2013, ApJ, 763, 62 Google Scholar
Blum, R. D., Ramírez, S. V., Sellgren, K., & Olsen, K. 2003, ApJ, 597, 323 Google Scholar
Böker, T., Laine, S., van der Marel, R. P., et al. 2002, AJ, 123, 1389 Google Scholar
Böker, T., Sarzi, M., McLaughlin, D. E., et al. 2004, AJ, 127, 105 Google Scholar
Buchholz, R. M., Schödel, R., & Eckart, A. 2009, A&A, 499, 483 Google Scholar
Capuzzo-Dolcetta, R. & Miocchi, P. 2008, ApJ, 681, 1136 Google Scholar
Carollo, C. M., Stiavelli, M., & Mack, J. 1998, AJ, 116, 68 Google Scholar
Côté, P., Piatek, S., Ferrarese, L., et al. 2006, ApJS, 165, 57 CrossRefGoogle Scholar
De Lorenzi, F., Hartmann, M., Debattista, V. P., Seth, A. C., & Gerhard, O. 2013, MNRAS, 429, 2974 Google Scholar
den Brok, M., Peletier, R. F., Seth, A., et al. 2014, MNRAS, 445, 2385 Google Scholar
Do, T., Kerzendorf, W., Winsor, N., et al. 2015, ApJ, 809, 143 Google Scholar
Eckart, A., Genzel, R., Ott, T., & Schödel, R. 2002, MNRAS, 331, 917 Google Scholar
Feldmeier, A., Neumayer, N., Seth, A., et al. 2014, A&A, 570, A2 Google Scholar
Feldmeier-Krause, A., Neumayer, N., Schödel, R., et al. 2015, ArXiv e-printsGoogle Scholar
Ferrarese, L., Côté, P., Dalla Bontà, E., et al. 2006, ApJ, 644, L21 Google Scholar
Geballe, T. R., Najarro, F., Rigaut, F., & Roy, J.-R. 2006, ApJ, 652, 370 Google Scholar
Georgiev, I. Y. & Böker, T. 2014, MNRAS, 441, 3570 Google Scholar
Ghez, A. M., Salim, S., Hornstein, S. D., et al. 2005, ApJ, 620, 744 Google Scholar
Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1044 Google Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., et al. 2009, ApJ, 692, 1075 Google Scholar
Gnedin, O. Y., Ostriker, J. P., & Tremaine, S. 2013, ArXiv e-printsGoogle Scholar
Hartmann, M., Debattista, V. P., Seth, A., Cappellari, M., & Quinn, T. R. 2011, MNRAS, 418, 2697 Google Scholar
Krabbe, A., Genzel, R., Eckart, A., et al. 1995, ApJ, 447, L95 Google Scholar
Launhardt, R., Zylka, R., & Mezger, P. G. 2002, A&A, 384, 112 Google Scholar
Lu, J. R., Do, T., Ghez, A. M., et al. 2013, ApJ, 764, 155 Google Scholar
Lyubenova, M., van den Bosch, R. C. E., Côté, P., et al. 2013, MNRAS, 431, 3364 Google Scholar
Milosavljević, M. 2004, ApJ, 605, L13 Google Scholar
Moorwood, A., Cuby, J.-G., Biereichel, P., et al. 1998, The Messenger, 94, 7 Google Scholar
Neumayer, N., Walcher, C. J., Andersen, D., et al. 2011, MNRAS, 413, 1875 Google Scholar
Paumard, T., Genzel, R., Martins, F., et al. 2006, ApJ, 643, 1011 Google Scholar
Perets, H. B. & Mastrobuono-Battisti, A. 2014, ApJ, 784, L44 Google Scholar
Perger, M., Moultaka, J., Eckart, A., et al. 2008, A&A, 478, 127 Google Scholar
Pflamm-Altenburg, J. & Kroupa, P. 2009, MNRAS, 397, 488 Google Scholar
Pfuhl, O., Fritz, T. K., Zilka, M., et al. 2011, ApJ, 741, 108 Google Scholar
Sanchez-Bermudez, J., Schödel, R., Alberdi, A., et al. 2014, A&A, 567, A21 Google Scholar
Schödel, R., Feldmeier, A., Kunneriath, D., et al. 2014a, A&A, 566, A47 Google Scholar
Schödel, R., Feldmeier, A., Neumayer, N., Meyer, L., & Yelda, S. 2014b, Classical and Quantum Gravity, 31, 244007 Google Scholar
Schödel, R., Najarro, F., Muzic, K., & Eckart, A. 2010, A&A, 511, A18 Google Scholar
Sharples, R., Bender, R., Agudo Berbel, A., et al. 2013, The Messenger, 151, 21 Google Scholar
Tanner, A., Figer, D. F., Najarro, F., et al. 2006, ApJ, 641, 891 Google Scholar
Tremaine, S. D., Ostriker, J. P. & Spitzer, L. Jr. 1975, ApJ, 196, 407 Google Scholar
Turner, M. L., Côté, P., Ferrarese, L., et al. 2012, ApJS, 203, 5 Google Scholar
Viehmann, T., Eckart, A., Schödel, R., Pott, J.-U., & Moultaka, J. 2006, ApJ, 642, 861 Google Scholar
Walcher, C. J., van der Marel, R. P., McLaughlin, D., et al. 2005, ApJ, 618, 237 CrossRefGoogle Scholar