Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T05:12:01.416Z Has data issue: false hasContentIssue false

Are “realistic” model atmospheres realistic enough?

Published online by Cambridge University Press:  09 March 2010

Bengt Gustafsson*
Affiliation:
Dept. of Physics & Astronomy, Uppsala University, Box 515, SE-75120 Uppsala, Sweden email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the latest decades the number of papers on stellar chemical abundances has increased dramatically. This is basically reflecting the very great achievements in telescope- and spectrometer-construction technology. The analysis of the resulting stellar spectra, however, is still not up to the standard that is offered by the observational methods. Recent significant advances in the analysis methods (i.e., in constructing model atmospheres and model spectra to compare with the observed ones) is reviewed with the emphasis on the application to abundance analysis of late-type stars. It is found that the very considerable progress that have been made beyond mixing-length convection and LTE is a major break-through for physically consistent modeling. Still, however, further steps must be taken, in particular for the cooler stars, before the situation is fully satisifactory.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Anderson, L. S. 1989, ApJ, 339, 558CrossRefGoogle Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2007, A&A, 464, 1081Google Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2008, A&A, 481, 481Google Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2009, A&A, 494, 1083Google Scholar
Asplund, M. 2005, ARA&A, 43, 481Google Scholar
Asplund, M. & García, Pérez 2001, A&A, 372, 601Google Scholar
Asplund, M., Carlsson, M., & Botnen, A. V. 2003, A&A, 399, L31Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., et al. 2004, A&A, 417, 751Google Scholar
Barklem, P., Belyaev, A. K., & Asplund, M. 2003, A&A, 409, L1Google Scholar
Barklem, P. 2007, A&A, 462, 781Google Scholar
Behara, N. T., Ludwig, H.-G., Bonifacio, P., et al. 2009, arXiv, 0909.1010Google Scholar
Bergemann, M. 2008, Physica Scripta, 133, 14013CrossRefGoogle Scholar
Bergemann, M. & Gehren, T. 2008, A&A, 492, 823Google Scholar
Bonifacio, P., Caffau, E., & Ludwig, H.-G. 2009, Mem. S.A.It, 75, 282Google Scholar
Bowen, G. H. 1988, ApJ, 329, 299CrossRefGoogle Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., et al. 2008, A&A, 488, 1031Google Scholar
Caffau, E., Maiorca, E., Bonifacio, P., et al. 2009, A&A, 498, 877Google Scholar
Carlsson, M. 2008, Physica Scripta, 133, 4012Google Scholar
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. H. 2005, arXiv 0509798Google Scholar
Collet, R., Asplund, M., & Thévenin, F. 2005, A&A, 442, 643Google Scholar
Collet, R., Asplund, M., & Trampedach, R. 2007, A&A, 469, 687Google Scholar
Chiavassa, A., Plez, B., Josselin, E., & Freytag, B. 2009, A&A, 506, 1351Google Scholar
Dorch, S. B. F. 2004, A&A, 423, 1101Google Scholar
Fabbian, D., Asplund, M., Barklem, P., et al. 2009, A&A, 500, 1143Google Scholar
Fleischer, A. J., Gauger, A., & Sedlmayr, E. 1992, A&A, 266, 321Google Scholar
Freytag, B. 2003, ANS, 324, 67Google Scholar
Freytag, B. 2008, EAS Publ. Ser., 28, 9CrossRefGoogle Scholar
Freytag, B., & Ludwig, H.-G. 2007, SF2A-2007: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, eds. J Bouvier, A. Chalabaev, and C. Charbonnel, 481Google Scholar
Freytag, B. & Höfner, S. 2008, A&A, 483, 571Google Scholar
Gautschy-Loidl, R., Höfner, S., Jœrgensen, U. G., & Hron, J. 2004, A&A, 422, 289Google Scholar
Gehren, T., Liang, Y. C., Shi, J. R., et al. 2004, A&A, 413, 1045Google Scholar
Gehren, T., Shi, J. R., Zhang, H. W., et al. 2006, A&A, 451, 1065Google Scholar
Hansteen, V. 2004, IAU Symp, 223, 385CrossRefGoogle Scholar
Hansteen, V. H., de Pontieu, B., Carlsson, M., et al. 2007, PASJ, 59, 699CrossRefGoogle Scholar
Hernández, J. I. G., Bonifacio, P., Ludwig, H.-G., et al. , 2008, AIP Conf. Proc., 990, 175CrossRefGoogle Scholar
Höfner, S. & Dorfi, E. A. 1997, A&A, 319, 648Google Scholar
Kervella, P., Verhoelst, T., & Ridgway, S. T. 2009, A&A, 504, 115Google Scholar
Korn, A., Grundahl, F., Richard, O. et al. 2006, Nature, 442, 657CrossRefGoogle Scholar
Kucinskas, A., Dobrovolskas, V., Ivanauskas, A. et al. 2009, this symposiumGoogle Scholar
Leenaarts, J., Carlsson, M., Hansteen, V., et al. , 2007, A&A, 473, 625Google Scholar
Leenaarts, J., Carlsson, M., Hansteen, V., et al. , 2009, ApJ, 694, L128CrossRefGoogle Scholar
Lind, K., Asplund, M., & Barklem, P. 2009, A&A, 503, 541Google Scholar
Liu, Y. J., Zhao, G., Shi, J. R, et al. 2007, MNRAS, 382, 553CrossRefGoogle Scholar
Ludwig, H.-G., Allard, F., & Hauschildt, P. H. 2002, A&A, 395, 99Google Scholar
Ludwig, H.-G., Allard, F., & Hauschildt, P. H. 2006, A&A, 459, 599Google Scholar
Ludwig, H.-G. & Kucinskas, A. 2005, ESA-SP, 560, 319Google Scholar
Ludwig, H.-G. & Steffen, M. 2008, in Precision Spectroscopy in Astrophysics, Proc. ESO/Lisbon/Aveiro Conf., eds. Santos, N. C. et al. , p. 133Google Scholar
Mashonkina, L, Ryabchikova, T, & Ryabtsev, A. 2005, A&A, 441, 309Google Scholar
Mattsson, Wahlin R., & Höfner, S. 2009, arXiv, 0909.1513Google Scholar
Meléndez, J., Asplund, M., Gustafsson, B., & Yong, D. 2009, ApJL, 704, L66CrossRefGoogle Scholar
Nordlund, Å 1982, A&A, 107, 1Google Scholar
Nordlund, Å, Stein, R. F., & Asplund, M. 2009, Living Rev. Solar Phys., 6, No. 2CrossRefGoogle Scholar
Pereira, T., Asplund, M., & Kiselman, D. 2009, arXiv 0909.4121Google Scholar
Sandin, C. & Höfner, S. 2004, A&A, 413, 789Google Scholar
Sandin, C. 2008, MNRAS, 385, 215CrossRefGoogle Scholar
Schwarzschild, M. 1975, ApJ, 195, 137CrossRefGoogle Scholar
Shchukina, N. G., Trujillo Bueno, J., & Asplund, M. 2005, ApJ, 618, 939CrossRefGoogle Scholar
Shi, J. R., Gehren, T., Zhang, H. W., et al. 2007, A&A, 465, 587Google Scholar
Shi, J. R., Gehren, T., Butler, K., et al. 2008, A&A, 486, 303Google Scholar
Short, C. I. & Hauschildt, P. H. 2003, ApJ, 596, 501CrossRefGoogle Scholar
Short, C. I. & Hauschildt, P. H. 2005, ApJ, 618, 926CrossRefGoogle Scholar
Short, C. I. & Hauschildt, P. H. 2006, ApJ, 641, 494CrossRefGoogle Scholar
Short, C. I. & Hauschildt, P. H. 2009, ApJ, 691, 1634CrossRefGoogle Scholar
Skartlien, R. 2000, ApJ, 536, 465CrossRefGoogle Scholar
Sundqvist, J. O., Ryde, N., Harper, G. M., et al. 2008, A&A, 486, 985Google Scholar
Trujillo Bueno, J. & Shchukina, N. 2007, ApJ, 664, L135CrossRefGoogle Scholar
Uitenbroek, H. 2006, ApJ, 639, 516CrossRefGoogle Scholar
Wood, P. R. 1979, ApJ, 227, 220CrossRefGoogle Scholar
Zhang, H. W., Gehren, T., Butler, K., et al. 2006, A&A, 457, 645Google Scholar
Zhang, H. W., Gehren, T., & Zhao, G. 2008, A&A, 481, 489Google Scholar