Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T04:49:28.271Z Has data issue: false hasContentIssue false

Are planetary nebulae derived from multiple evolutionary scenarios?

Published online by Cambridge University Press:  30 August 2012

David J. Frew
Affiliation:
1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia email: [email protected] Macquarie University Research Centre in Astronomy, Astrophysics & Astrophotonics
Quentin A. Parker
Affiliation:
1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia email: [email protected] Macquarie University Research Centre in Astronomy, Astrophysics & Astrophotonics Australian Astronomical Observatory, PO Box 296, Epping, NSW 1710, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our understanding of planetary nebulae has been significantly enhanced as a result of several recent large surveys (Parker et al., these proceedings). These new discoveries suggest that the ‘PN phenomenon’ is in fact more heterogeneous than previously envisaged. Even after the careful elimination of mimics from Galactic PN catalogues, there remains a surprising diversity in the population of PNe and especially their central stars. Indeed, several evolutionary scenarios are implicated in the formation of objects presently catalogued as PNe. We provide a summary of these evolutionary pathways and give examples of each. Eventually, a full census of local PNe can be used to confront both stellar evolution theory and population synthesis models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Althaus, L. G., Córsico, A. H., Torres, S., & García-Berro, E. 2009, A&A, 1021 (2009)Google Scholar
Bond, H. E. & Livio, M. 1990, ApJ, 355, 568 CrossRefGoogle Scholar
Clayton, G. C., Geballe, T. R., Herwig, F., Fryer, C., & Asplund, M. 2007, ApJ, 662, 1220 CrossRefGoogle Scholar
Clayton, G. C., De Marco, O., Whitney, B. A., et al. 2011, AJ, 142, 54 CrossRefGoogle Scholar
Corradi, R. L. M., Sabin, L., Miszalski, B., et al. 2011, MNRAS, 410, 1349 CrossRefGoogle Scholar
Danehkar, A., Frew, D. J., Parker, Q., De Marco, O. 2011, IAUS 282, in press, arXiv:1109.2181Google Scholar
De Marco, O. 2002, Ap&SS, 279, 157 Google Scholar
De Marco, O. 2009, PASP, 121, 316 CrossRefGoogle Scholar
De Marco, O. & Soker, N. 2002, PASP, 114, 602 CrossRefGoogle Scholar
De Marco, O., Hillwig, T. C., & Smith, A. J. 2008, AJ, 136, 323 CrossRefGoogle Scholar
DePew, K., Parker, Q. A., Miszalski, B., et al. 2011, MNRAS, 414, 2812 CrossRefGoogle Scholar
Dufour, P., Fontaine, G., Liebert, J., Schmidt, G. D., & Behara, N. 2008, ApJ, 683, 978 CrossRefGoogle Scholar
Fogel, J., De Marco, O., & Jacoby, G., 2003, IAUS, 209, 235 Google Scholar
Frankowski, A. & Jorissen, A. 2007, BaltA, 16, 104 Google Scholar
Frew, D. J. & Parker, Q. A. 2007, APN4 Conf. Proc., IAC, 475Google Scholar
Frew, D. J. & Parker, Q. A. 2010, PASA, 27, 129 CrossRefGoogle Scholar
Frew, D. J.,. & Parker, Q. A. 2011, APN5 Conf. Proc. Ebrary 33, arXiv:1010.5003Google Scholar
Frew, D. J., Madsen, G. J., & O'Toole, S. J., Parker, Q. A. 2010, PASA, 27, 203 CrossRefGoogle Scholar
Frew, D. J., et al. 2011, MNRAS, submittedGoogle Scholar
Gänsicke, B. T., Koester, D., Girven, J., et al. 2010, Science, 327, 188 CrossRefGoogle Scholar
Gesicki, K., Zijlstra, A. A., Acker, A., et al. 2006, A&A, 451, 925 Google Scholar
Girard, P., Köppen, J., & Acker, A. 2007, A&A, 463, 265 Google Scholar
Hamann, W.-R., Peña, M., Gräfener, G., & Ruiz, M. T. 2003, A&A, 409, 969 Google Scholar
Lepo, K. & van Kerkwijk, M. 2011, IAUS 281 in press, arXiv:1109.4394 Google Scholar
Miller Bertolami, M. M., Althaus, L., Olano, C., & Jiménez, N. 2011, MNRAS, 415, 1396 CrossRefGoogle Scholar
Miszalski, B., Acker, A., Parker, Q. A., & Moffat, A. F. J. 2009, A&A, 505, 249 Google Scholar
Miszalski, B., Acker, A., Parker, Q. A., et al. 2010, APN5 Conf. Proc., Ebrary, 109Google Scholar
Morgan, D. H., Parker, Q. A., & Cohen, M. 2003, MNRAS, 346, 719 CrossRefGoogle Scholar
Parker, Q. A. & Morgan, D. H. 2003, MNRAS, 341, 961 CrossRefGoogle Scholar
Parker, Q. A., Phillipps, S., Pierce, M. J., et al. 2005, MNRAS, 362, 689 CrossRefGoogle Scholar
Peña, M., Peimbert, M., Torres-Peimbert, S., Ruiz, M. T., & Maza, J. 1995, ApJ, 441, 343 CrossRefGoogle Scholar
Shaw, R. A., Stanghellini, L., Villaver, E., & Mutchler, M. 2006, ApJS, 167, 201 CrossRefGoogle Scholar
Soker, N. & Kashi, A. 2011, eprint: arXiv:1108.2257Google Scholar
Szyszka, C., Zijlstra, A. A., & Walsh, J. R., 2011, MNRAS, 416, 715 Google Scholar
Todt, H., Peña, M., Hamann, W.-R., & Gräfener, G. 2010a, AIPC, 1273, 219 Google Scholar
Todt, H., Peña, M., Hamann, W.-R., & Gräfener, G. 2010b, A&A, 515, 83 Google Scholar
Tylenda, R., Acker, A., & Stenholm, B. 1993, A&AS, 102, 595 Google Scholar
Werner, K. & Herwig, F. 2006, PASP, 118, 183 CrossRefGoogle Scholar
Werner, K. 2012, IAUS 283, in press, arXiv:1109.2391Google Scholar
Wesson, R., Barlow, M. J., Corradi, R. L. M., et al. 2008, ApJ, 688, L21 CrossRefGoogle Scholar