Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T20:57:38.588Z Has data issue: false hasContentIssue false

Apsidal Motion in Massive Binaries: CPD-41° 7742, an Extreme Case?

Published online by Cambridge University Press:  29 August 2024

S. Rosu*
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
G. Rauw
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
Y. Nazé
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
E. Gosset
Affiliation:
STAR Institute, Université de Liège, Allée du 6 août 19c, Bât B5c, 4000 Liège, Belgium
C. Sterken
Affiliation:
Physics Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the apsidal motion in close eccentric massive binaries. Measuring the rate of apsidal motion in such a system gives insight into the internal structure and evolutionary state of the stars. We focus on CPD-41° 7742, for which independent studies in the past showed large discrepancies in the longitude of periastron of the orbit, hinting at the presence of apsidal motion. We perform a consistent analysis of all observational data to solve this apparent discrepancy and report the first determination of apsidal motion in this system. This study confirms the need for enhanced mixing in the stellar evolution models of the primary star to reproduce the observational properties. This points towards larger convective cores than usually considered.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bouzid, M. Y., Sterken, C., & Pribulla, T. 2005, A&A, 437, 769Google Scholar
Giménez, A., & Bastero, M. 1995, Ap&SS, 226, 99Google Scholar
González, J. F., & Levato, H. 2006, A&A, 448, 283Google Scholar
Hillier, D. J., & Miller, D. L. 1998, ApJ, 496, 407Google Scholar
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, JATIS, 1, 014003Google Scholar
Rosu, S., Rauw, G., Nazé, Y., Gosset, E., & Sterken, C. 2022, A&A, in press [arXiv:2205.11207]Google Scholar
Royer, P., Vreux, J.-M., & Manfroid, J. 1998, A&AS, 130, 407Google Scholar
Sana, H., Antokhina, E., Royer, P., et al. 2005, A&A, 441, 213Google Scholar
Sana, H., Hensberge, H., Rauw, G., & Gosset, E. 2003, A&A, 405, 1063Google Scholar
Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, Ap&SS, 316, 83Google Scholar
Wichmann, R. 2011, Nightfall, Astrophysics Source Code Library, record ascl:1106.016Google Scholar