Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T12:18:43.620Z Has data issue: false hasContentIssue false

Application of recent results on the orbital migration of low mass planets: convergence zones

Published online by Cambridge University Press:  10 November 2011

Christoph Mordasini
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Kai-Martin Dittkrist
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Yann Alibert
Affiliation:
Physikalisches Institut, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Hubert Klahr
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Willy Benz
Affiliation:
Physikalisches Institut, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Thomas Henning
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous models of the combined growth and migration of protoplanets needed large ad hoc reduction factors for the type I migration rate as found in the isothermal approximation. In order to eliminate these factors, a simple semi-analytical model is presented that incorporates recent results on the migration of low mass planets in non-isothermal disks. It allows for outward migration. The model is used to conduct planetary populations synthesis calculations. Two points with zero torque are found in the disks. Planets migrate both in- and outward towards these convergence zones. They could be important for accelerating planetary growth by concentrating matter in one point. We also find that the updated type I migration models allow the formation of both close-in low mass planets, but also of giant planets at large semimajor axes. The problem of too rapid migration is significantly mitigated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alibert, Y., Mordasini, C., Benz, W., & Winisdoerffer, C. 2005, A&A, 434, 343Google Scholar
Baruteau, C. & Lin, D. N. C. 2010, ApJ, 709, 759CrossRefGoogle Scholar
Crida, A., Morbidelli, A., & Masset, F. 2006, Icarus, 181, 587Google Scholar
Crida, A. & Morbidelli, A. 2007, MNRAS, 377, 1324CrossRefGoogle Scholar
Dittkrist, K.-M., Mordasini, C., Alibert, Y., Klahr, H., Benz, W., & Henning, T. in prep.Google Scholar
Howard, A. W., et al. 2010, Science, 330, 653CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2008, ApJ, 673, 487Google Scholar
Lyra, W., Paardekooper, S.-J. & Mac Low, M.-M. 2010, ApJL, 715, L68CrossRefGoogle Scholar
Kley, W. & Crida, A. 2008, A&A, 487, L9Google Scholar
Kley, W., Bitsch, B., & Klahr, H. 2009, A&A, 506, 971Google Scholar
Masset, F. S., D'Angelo, G., & Kley, W. 2006, ApJ, 652, 730Google Scholar
Mordasini, C., Alibert, Y., & Benz, W. 2009a, A&A, 501, 1139Google Scholar
Mordasini, C., Alibert, Y., Benz, W., & Naef, D. 2009b, A&A, 501, 1161Google Scholar
Paardekooper, S.-J. & Mellema, G. 2006, A&A, 459, L17Google Scholar
Paardekooper, S.-J., Baruteau, C., Crida, A., & Kley, W. 2010, MNRAS, 401, 1950Google Scholar
Sandor, Z., Lyra, W., & Dullemond, C. 2011, ApJ, 728, L9Google Scholar
Schlaufman, K. C., Lin, D. N. C., & Ida, S. 2009, ApJ, 691, 1322CrossRefGoogle Scholar
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257Google Scholar