Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:39:49.316Z Has data issue: false hasContentIssue false

Anions in Space and in the Laboratory

Published online by Cambridge University Press:  21 December 2011

Veronica M. Bierbaum*
Affiliation:
Department of Chemistry and Biochemistry, Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309-0215 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The astronomical detection of molecular anions has prompted our study of their chemical reactions with atomic species that are abundant in the interstellar medium. We have recently explored the chemistry of a variety of Cx Ny anions with hydrogen atoms and determined their reaction rate constants and products using the flowing afterglow-selected ion flow tube technique. Computational studies allow characterization of the structures of reactants and products, as well as the energetics along the reaction pathway. For anions containing one or two nitrogen atoms, reactions with hydrogen atoms are facile, and proceed primarily by associative detachment. In contrast, anions containing three nitrogen atoms are unreactive with hydrogen atoms due to reaction barriers and unfavorable thermodynamics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Agúndez, M., Cernicharo, J., Guélin, M., Kahane, C., Roueff, E., Klos, J., Aoiz, F. J., Lique, F., Marcelino, N., Goicoechea, J. R., González García, M., Gottlieb, C. A., McCarthy, M. C., & Thaddeus, P. 2010, A&A, 517, L2Google Scholar
Barckholtz, C., Snow, T. P., & Bierbaum, V. M. 2001, ApJ, 547, L171CrossRefGoogle Scholar
Brünken, S., Gupta, H., Gottlieb, C. A., McCarthy, M. C., & Thaddeus, P. 2007, ApJ, 664, L43CrossRefGoogle Scholar
Cernicharo, J., Guélin, M., Agúndez, M., Kawaguchi, K., McCarthy, M., & Thaddeus, P. 2007, A&A, 467, L37Google Scholar
Cernicharo, J., Guélin, M., Agúndez, M., McCarthy, M. C., & Thaddeus, P. 2008, ApJ, 688, L83CrossRefGoogle Scholar
Douglas, A. E. & Herzberg, G. 1941, ApJ, 94, 381CrossRefGoogle Scholar
Eichelberger, B., Snow, T. P., Barckholtz, C., & Bierbaum, V. M. 2007, ApJ, 667, 1283CrossRefGoogle Scholar
Martinez, O. Jr., Yang, Z., Demarais, N. J., Snow, T. P., & Bierbaum, V. M. 2010, ApJ, 720, 173CrossRefGoogle Scholar
McCarthy, M. C., Gottlieb, C. A., & Gupta, H., Thaddeus, P. 2006, ApJ, 652, L141CrossRefGoogle Scholar
Remijan, A. J., Hollis, J. M., Lovas, F. J., Cordiner, M. A., Millar, T. J., Markwick-Kemper, A. J., & Jewell, P. R. 2007, ApJ, 664, L47CrossRefGoogle Scholar
Snow, T. P., Bierbaum, V. M. 2008, Annu. Rev. Anal. Chem., 1, 229CrossRefGoogle Scholar
Snow, T. P., Stepanovic, M., Betts, N. B., Eichelberger, B. R., Martinez, O. Jr., & Bierbaum, V. M. 2009, Astrobiol., 9, 1001CrossRefGoogle Scholar
Thaddeus, P., Gottlieb, C. A., Gupta, H., Brünken, S., McCarthy, M. C., Agúndez, M., Guélin, M., & Cernicharo, J. 2007, ApJ, 677, 1132CrossRefGoogle Scholar
Van Doren, J. M., Barlow, S. E., DePuy, C. H., & Bierbaum, V. M. 1987, Int. J. Mass Spectrom. Ion Proc., 81, 85CrossRefGoogle Scholar
Yang, Z., Snow, T. P., & Bierbaum, V. M. 2010a, Phys. Chem. Chem. Phys., 12, 13091CrossRefGoogle Scholar
Yang, Z., Eichelberger, B., Carpenter, M. Y., Martinez, O. Jr., Snow, T. P., & Bierbaum, V. M. 2010b, ApJ, 723, 1325CrossRefGoogle Scholar
Yang, Z., Eichelberger, B., Martinez, O. Jr., Stepanovic, M., Snow, T. P., & Bierbaum, V. M. 2010c, J. Am. Chem. Soc., 132, 5812CrossRefGoogle Scholar
Yang, Z., Cole, C. A., Martinez, O. Jr., Carpenter, M. Y., Snow, T. P., & Bierbaum, V. M., ApJ, in press 2011.Google Scholar