Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T18:16:53.805Z Has data issue: false hasContentIssue false

The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey

Published online by Cambridge University Press:  08 May 2018

Samir Choudhuri
Affiliation:
National Centre For Radio Astrophysics, Post Bag 3, Ganeshkhind, Pune 411 007, India Department of Physics, & Centre for Theoretical Studies, IIT Kharagpur, Kharagpur 721 302, India
Somnath Bharadwaj
Affiliation:
Department of Physics, & Centre for Theoretical Studies, IIT Kharagpur, Kharagpur 721 302, India
Sk. Saiyad Ali
Affiliation:
Department of Physics, Jadavpur University, Kolkata 700032, India
Nirupam Roy
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560012, India
H. T. Intema
Affiliation:
Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333CA, Leiden, The Netherlands
Abhik Ghosh
Affiliation:
Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa SKA SA, The Park, Park Road, Pinelands 7405, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (C) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the C from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 ≤ ℓ ≲ 500. We fit a power law to the measured C over this ℓ range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured C as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Ali, S. S., Bharadwaj, S., & Chengalur, J. N., 2008, MNRAS, 385, 2166Google Scholar
Bernardi, G., et al. 2009, AAP, 500, 965CrossRefGoogle Scholar
Bharadwaj, S. & Ali, S. S., 2005, MNRAS, 356, 1519Google Scholar
Bowman, J. D., et al. 2013, Pub. Astro. Soc. Australia, 30, 31Google Scholar
Choudhuri, S., Bharadwaj, S., Ali, S. S., Roy, N., Intema, H. T., & Ghosh, A., 2017, MNRAS, 470, L11Google Scholar
Choudhuri, S., Bharadwaj, S., Chatterjee, S., Ali, S. S., Roy, N., & Ghosh, A., 2016, MNRAS, 463, 4093CrossRefGoogle Scholar
Choudhuri, S., Bharadwaj, S., Ghosh, A., & Ali, S. S., 2014, MNRAS, 445, 4351CrossRefGoogle Scholar
Dowell, J., Taylor, G. B., Schinzel, F. K., Kassim, N. E., & Stovall, K., 2017, MNRAS, 469, 4537Google Scholar
Ghosh, A., Prasad, J., Bharadwaj, S., Ali, S. S., & Chengalur, J. N., 2012, MNRAS, 426, 3295Google Scholar
Guzmán, A. E., May, J., Alvarez, H., & Maeda, K., 2011, AAP, 525, A138Google Scholar
Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E., 1982, AAPS, 47, 1Google Scholar
Iacobelli, M., et al. 2013, AAP, 558, A72Google Scholar
Intema, H. T., 2014, in Astronomical Society of India Conference Series, Vol. 13, Astronomical Society of India Conference SeriesGoogle Scholar
Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A., 2017, AAP, 598, A78CrossRefGoogle Scholar
Intema, H. T., van der Tol, S., Cotton, W. D., Cohen, A. S., van Bemmel, I. M., & Röttgering, H. J. A., 2009, AAP, 501, 1185CrossRefGoogle Scholar
Koopmans, L. et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 1Google Scholar
Lazarian, A. & Pogosyan, D., 2012, ApJ, 747, 5Google Scholar
Mellema, G., et al. 2013, Experimental Astronomy, 36, 235Google Scholar
Neben, A. R., et al. 2016, ApJ, 826, 199Google Scholar
Parsons, A. R., et al. 2010, AJ, 139, 1468CrossRefGoogle Scholar
Pritchard, J. R. & Loeb, A., 2012, Reports on Progress in Physics, 75, 086901Google Scholar
Reich, P. & Reich, W., 1988, AAPS, 74, 7Google Scholar
Reich, W., 1982, AAPS, 48, 219Google Scholar
Santos, M. G., Cooray, A., & Knox, L., 2005, ApJ, 625, 575Google Scholar
Shaver, P. A., Windhorst, R. A., Madau, P., & de Bruyn A. G., 1999, AAP, 345, 380Google Scholar
Sirothia, S. K., Lecavelier des Etangs, A., Gopal-Krishna, Kantharia N. G., & Ishwar-Chandra, C. H., 2014, AAP, 562, A108Google Scholar
Tingay, S. J., et al. 2013, Pub. Astro. Soc. Australia, 30, 7Google Scholar
van Haarlem, M. P., et al. 2013, AAP, 556, A2CrossRefGoogle Scholar
Waelkens, A. H., Schekochihin, A. A., & Enßlin, T. A., 2009, MNRAS, 398, 1970Google Scholar
Yatawatta, S., et al. 2013, AAP, 550, A136Google Scholar