Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T21:33:01.876Z Has data issue: false hasContentIssue false

Angular Momentum Evolution of Galaxies: the Perspective of Hydrodynamical Simulations

Published online by Cambridge University Press:  03 March 2020

Claudia del P. Lagos*
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Until a decade ago, galaxy formation simulations were unable to simultaneously reproduce the observed angular momentum (AM) of galaxy disks and bulges. Improvements in the interstellar medium and stellar feedback modelling, together with advances in computational capabilities, have allowed the current generation of cosmological galaxy formation simulations to reproduce the diversity of AM and morphology that is observed in local galaxies. In this review I discuss where we currently stand in this area from the perspective of hydrodynamical simulations, specifically how galaxies gain their AM, and the effect galaxy mergers and gas accretion have on this process. I discuss results which suggest that a revision of the classical theory of disk formation is needed, and by discussing what the current challenges are.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Burkert, A., Förster Schreiber, N. M., Genzel, R. et al., 2016, ApJ, 826, 214 CrossRefGoogle Scholar
Catelan, P., & Theuns, T., 1996, MNRAS, 282, 436 CrossRefGoogle Scholar
Choi, H., & Yi, S. K., 2017, ApJ, 837, 68 CrossRefGoogle Scholar
Cortese, L., Fogarty, L. M. R., Bekki, K. et al., 2016, arXiv:1608.00291Google Scholar
Crain, R. A., Schaye, J., Bower, R. G. et al., 2015, MNRAS, 450, 1937 CrossRefGoogle Scholar
Danovich, M., Dekel, A., Hahn, O. et al., 2015, MNRAS, 449, 2087 CrossRefGoogle Scholar
DeFelippis, D., Genel, S., Bryan, G. L. et al., 2017, ApJ, 841, 16 CrossRefGoogle Scholar
Dubois, Y., Peirani, S., Pichon, C. et al., 2016, MNRAS, 463, 3948 CrossRefGoogle Scholar
El-Badry, K., Quataert, E., Wetzel, A. et al., 2018, MNRAS, 473, 1930 CrossRefGoogle Scholar
Emsellem, E., Cappellari, M., Krajnović, D. et al., 2007, MNRAS, 379, 401 CrossRefGoogle Scholar
Garrison-Kimmel, S., Hopkins, P. F., Wetzel, A. et al., 2018, MNRAS Google Scholar
Genel, S., Fall, S. M., Hernquist, L. et al., 2015, ApJ, 804, L40 CrossRefGoogle Scholar
Governato, F., Brook, C., Mayer, L. et al., 2010, Nature, 463, 203 CrossRefGoogle Scholar
Guedes, J., Callegari, S., Madau, P. et al., 2011, ApJ, 742, 76 CrossRefGoogle Scholar
Harrison, C. M., Johnson, H. L., Swinbank, A. M. et al., 2017, MNRAS, 467, 1965 CrossRefGoogle Scholar
Kaufmann, T., Mayer, L., Wadsley, J. et al., 2007, MNRAS, 375, 53 CrossRefGoogle Scholar
Lagos, C. d. P., Schaye, J., Bahé, Y. et al., 2018a, MNRAS, 476, 4327 CrossRefGoogle Scholar
Lagos, C. d. P., Stevens, A. R. H., Bower, R. G. et al., 2018b, MNRAS, 473, 4956 CrossRefGoogle Scholar
Lagos, C. d. P., Theuns, T., Stevens, A. R. H. et al., 2017, MNRAS, 464, 3850 CrossRefGoogle Scholar
Mo, H. J., Mao, S., & White, S. D. M., 1998, MNRAS, 295, 319 CrossRefGoogle Scholar
Naab, T., Oser, L., Emsellem, E. et al., 2014, MNRAS, 444, 3357 CrossRefGoogle Scholar
Navarro, J. F., & Steinmetz, M., 2000, ApJ, 538, 477 CrossRefGoogle Scholar
Navarro, J. F., & White, S. D. M., 1994, MNRAS, 267, 401 CrossRefGoogle Scholar
Pedrosa, S. E., & Tissera, P. B., 2015, A&A, 584, A43 Google Scholar
Peebles, P. J. E., 1969, ApJ, 155, 393 CrossRefGoogle Scholar
Penoyre, Z., Moster, B. P., Sijacki, D. et al., 2017, MNRAS, 468, 3883 CrossRefGoogle Scholar
Pillepich, A., Springel, V., Nelson, D. et al., 2018, MNRAS, 473, 4077 CrossRefGoogle Scholar
Sales, L. V., Navarro, J. F., Theuns, T. et al., 2012, MNRAS, 423, 1544 CrossRefGoogle Scholar
Schaye, J., Crain, R. A., Bower, R. G. et al., 2015, MNRAS, 446, 521 CrossRefGoogle Scholar
Steinmetz, M., & Navarro, J. F., 1999, ApJ, 513, 555 CrossRefGoogle Scholar
Stevens, A. R. H., Lagos, C. d. P., Contreras, S. et al., 2016, arXiv:1608.04389Google Scholar
Stewart, K. R., Maller, A. H., Oñorbe, J. et al., 2017, ApJ, 843, 47 CrossRefGoogle Scholar
Swinbank, A. M., Harrison, C. M., Trayford, J. et al., 2017, MNRAS Google Scholar
Teklu, A. F., Remus, R.-S., Dolag, K. et al., 2015, ApJ, 812, 29 CrossRefGoogle Scholar
Vogelsberger, M., Genel, S., Springel, V. et al., 2014, Nature, 509, 177 CrossRefGoogle Scholar
Wang, L., Obreschkow, D., Lagos, C. D. P. et al., 2018, arXiv:1808.05564Google Scholar
Welker, C., Dubois, Y., Devriendt, J. et al., 2017, MNRAS, 465, 1241 CrossRefGoogle Scholar
Zavala, J., Okamoto, T., & Frenk, C. S., 2008, MNRAS, 387, 364 CrossRefGoogle Scholar