Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T16:04:55.927Z Has data issue: false hasContentIssue false

Anelastic Tidal Dissipation in Multi-Layer Planets

Published online by Cambridge University Press:  29 April 2014

Françcoise Remus
Affiliation:
LUTH, Observatoire de Paris – CNRS – Université Paris Diderot, 5 place Jules Janssen, F-92195 Meudon Cedex, France email: [email protected], [email protected] IMCCE, Observatoire de Paris – UMR 8028 du CNRS – Université Pierre et Marie Curie 77 avenue Denfert-Rochereau, F-75014 Paris, France email: [email protected] Laboratoire AIM Paris-Saclay, CEA/DSM – CNRS – Université Paris Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France email: [email protected]
Stéphane Mathis
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/DSM – CNRS – Université Paris Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France email: [email protected]
Jean-Paul Zahn
Affiliation:
LUTH, Observatoire de Paris – CNRS – Université Paris Diderot, 5 place Jules Janssen, F-92195 Meudon Cedex, France email: [email protected], [email protected]
Valéry Lainey
Affiliation:
IMCCE, Observatoire de Paris – UMR 8028 du CNRS – Université Pierre et Marie Curie 77 avenue Denfert-Rochereau, F-75014 Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Earth-like planets have anelastic mantles, whereas giant planets may have anelastic cores. As for the fluid parts, the tidal dissipation of these regions, gravitationally perturbed by a companion, highly depends on its internal friction and thus its internal structure. Therefore, modeling this kind of interaction presents a high interest to constrain planetary interiors, whose properties are still quite uncertain. Here, we examine the anelastic tidal dissipation in deep planetary interiors, in presence of a fluid envelope, and taking into account its dependence on the rheology.

Taking plausible values for the anelastic parameters, and discussing the frequency-dependence of the anelastic dissipation, we show how this mechanism may compete with the dissipation in fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy giants Uranus and Neptune. Finally, we show how the results may be implemented to describe the dynamical evolution of planetary systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Banfield, D. & Murray, N. 1992, Icarus, 99, 390Google Scholar
Charnoz, S., Crida, A., Castillo-Rogez, J. C., Lainey, V., Dones, L., Karatekin, Ö., Tobie, G., Mathis, S., Le Poncin-Lafitte, C., & Salmon, J. 2011, Icarus, 216, 535Google Scholar
Dermott, S. F. 1979, Icarus, 37, 310CrossRefGoogle Scholar
Efroimsky, M. & Lainey, V. 2007, J. Geophys. Res., 112, 12003Google Scholar
Gavrilov, S. V. & Zharkov, V. N. 1977, Icarus, 32, 443CrossRefGoogle Scholar
Goldreich, P. & Soter, S. 1966, Icarus, 5, 375Google Scholar
Guillot, T. 1999, Science, 286, 72Google Scholar
Guillot, T. 2005, Ann. Rev. Earth Planet. Sci., 33, 493Google Scholar
Helled, R., Anderson, J. D., Podolak, M., & Schubert, G. 2011, ApJ, 726, 15Google Scholar
Hubbard, W. B., Nellis, W. J., Mitchell, A. C., Holmes, N. C., McCandless, P. C., & Limaye, S. S. 1991, Science, 253, 648CrossRefGoogle Scholar
Hubbard, W. B., Dougherty, M. K., Gautier, D., & Jacobson, R. 2009, in: Dougherty, M. K., Esposito, L. W. & Krimigis, S. M. (eds.), Saturn from Cassini-Huygens, p. 75Google Scholar
Lainey, V., Arlot, J.-E., Karatekin, Ö., & van Hoolst, T. 2009, Nature, 459, 957Google Scholar
Lainey, V., Karatekin, Ö., Desmars, J., Charnoz, S., Arlot, J.-E., Emelyanov, N., Le Poncin-Lafitte, C., Mathis, S., Remus, F., Tobie, G., & Zahn, J.-P. 2012, ApJ, 752, 14Google Scholar
Mathis, S. & Le Poncin-Lafitte, C. 2009, A&A, 497, 889Google Scholar
Ogilvie, G. I. & Lin, D. N. C. 2004, ApJ, 610, 4770Google Scholar
Podolak, M., Weizman, A., & Marley, M. 1995, P&SS, 43, 1517Google Scholar
Redmer, R., Mattsson, T. R., Nettelmann, N., & French, M. 2011, Icarus, 211, 798Google Scholar
Remus, F., Mathis, S., Zahn, J.-P., & Lainey, V. 2012, A&A, 541, A165Google Scholar
Remus, F., Mathis, S., & Zahn, J.-P. 2012, A&A, 544, A132Google Scholar
Santos, N. C.et al. 2007, JENAM-2007, Abstract 5-5Google Scholar
Stanley, S. & Bloxham, J. 2004, Nature, 428, 151CrossRefGoogle Scholar
Stanley, S. & Bloxham, J. 2006, Icarus, 184, 556Google Scholar
Trafton, L. 1974, ApJ, 193, 477Google Scholar
Wu, Y. 2005, ApJ, 635, 688Google Scholar
Zhang, K. & Hamilton, D. P. 2008, Icarus, 193, 267Google Scholar