Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T06:33:01.406Z Has data issue: false hasContentIssue false

Analytic, Turbulent Pressure Driven Mass Loss from Red Supergiants

Published online by Cambridge University Press:  29 August 2024

N. Dylan Kee*
Affiliation:
National Solar Observatory, 22 Ohi’a Ku St, Makawao, HI 96768, USA
the MAESTRO Project
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Despite the important role mass loss in the red supergiant phase plays in controlling stellar evolution and massive stars’ final supernova fates, a theoretical explanation of the mechanism driving this mass loss has been elusive. In this contribution we present a recent breakthrough [Kee et∼al., 2021] showing that turbulent pressure alone is sufficient to markedly extend the atmospheres of red supergiants and allow a wind to be launched. The resulting theory provides a fully analytic prescription for red supergiant mass-loss rates. Moreover, the theoretical mass-loss rates computed from observationally inferred turbulent velocities are in overall good agreement with observationally inferred red supergiant mass loss. A particularly interesting aspect of this theory is that it is not sensitive to metallicity, providing important implications for stellar evolution and the so-called “red-supergiant problem” for supernova progenitors in various environments.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Arroyo-Torres, B., Wittkowski, M., Chiavassa, A., Scholz, M., Freytag, B., Marcaide, J. M., Hauschildt, P. H., Wood, P. R., & Abellan, F. J. 2015, What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres. A&A, 575, A50.Google Scholar
Beasor, E. R., Davies, B., & Smith, N. 2021, The Impact of Realistic Red Supergiant Mass Loss on Stellar Evolution. ApJ, 922(1), 55.Google Scholar
Beasor, E. R., Davies, B., Smith, N., van Loon, J. T., Gehrz, R. D., & Figer, D. F. 2020, A new mass-loss rate prescription for red supergiants. MNRAS, 492(4), 59946006.Google Scholar
Beasor, E. R. & Smith, N. 2022, The extreme scarcity of dust-enshrouded red supergiants: consequences for producing stripped stars via winds. arXiv e-prints,, arXiv:2205.02207.CrossRefGoogle Scholar
Davies, B. & Plez, B. 2021, The impact of winds on the spectral appearance of red supergiants. MNRAS, 508(4), 57575765.CrossRefGoogle Scholar
de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, Mass loss rates in the Hertzsprung-Russell diagram. A&AS, 72, 259289.Google Scholar
Freytag, B., Steffen, M., Ludwig, H. G., Wedemeyer-Böhm, S., Schaffenberger, W., & Steiner, O. 2012, Simulations of stellar convection with CO5BOLD. Journal of Computational Physics, 231(3), 919959.CrossRefGoogle Scholar
Goldberg, J. A., Jiang, Y.-F., & Bildsten, L. 2022, Numerical Simulations of Convective Three-dimensional Red Supergiant Envelopes. ApJ, 929(2), 156.Google Scholar
Gustafsson, B. & Plez, B. Can classical model atmospheres be of any use for the study of hypergiants. In de Jager, C. & Nieuwenhuijzen, H., editors, Instabilities in Evolved Super- and Hypergiants 1992,, 86.Google Scholar
Höfner, S. & Olofsson, H. 2018, Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. A&AR, 26(1), 1.Google Scholar
Josselin, E. & Plez, B. 2007, Atmospheric dynamics and the mass loss process in red supergiant stars. A&A, 469(2), 671680.Google Scholar
Kee, N. D., Sundqvist, J. O., Decin, L., de Koter, A., & Sana, H. 2021, Analytic, dust-independent mass-loss rates for red supergiant winds initiated by turbulent pressure. A&A, 646, A180.Google Scholar
Levesque, E. M. 2017,. Astrophysics of Red Supergiants. IOP Publishing.CrossRefGoogle Scholar
Lucy, L. B. 1971, The Formation of Resonance Lines in Extended and Expanding Atmospheres. ApJ, 163, 95.CrossRefGoogle Scholar
Nieuwenhuijzen, H. & de Jager, C. 1990, Parametrization of stellar rates of mass loss as functions of the fundamental stellar parameters M, L, and R. A&A, 231, 134136.Google Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K. H. 2017, Vigorous atmospheric motion in the red supergiant star Antares. Nature, 548(7667), 310312.CrossRefGoogle ScholarPubMed
Parker, E. N. 1958, Dynamics of the Interplanetary Gas and Magnetic Fields. ApJ, 128, 664.CrossRefGoogle Scholar
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. 2011, Modules for Experiments in Stellar Astrophysics (MESA). ApJS, 192(1), 3.CrossRefGoogle Scholar
Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., Stello, D., Timmes, F. X., & Townsend, R. 2013, Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars. ApJS, 208(1), 4.CrossRefGoogle Scholar
Sabhahit, G. N., Vink, J. S., Higgins, E. R., & Sander, A. A. C. 2021, Superadiabaticity and the metallicity independence of the Humphreys-Davidson limit. MNRAS, 506(3), 44734487.CrossRefGoogle Scholar
Smartt, S. J., Eldridge, J. J., Crockett, R. M., & Maund, J. R. 2009, The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae. MNRAS, 395(3), 1409–1437.Google Scholar
van Loon, J. T., Groenewegen, M. A. T., de Koter, A., Trams, N. R., Waters, L. B. F. M., Zijlstra, A. A., Whitelock, P. A., & Loup, C. 1999, Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC. A&A, 351, 559572.Google Scholar
Vanbeveren, D., De Donder, E., Van Bever, J., Van Rensbergen, W., & De Loore, C. 1998, The WR and O-type star population predicted by massive star evolutionary synthesis. New Astron., 3(7), 443492.CrossRefGoogle Scholar