Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T17:45:20.575Z Has data issue: false hasContentIssue false

Analogues of Cores and Stars in Simulated Molecular Clouds

Published online by Cambridge University Press:  27 April 2011

James Wadsley*
Affiliation:
Dept. Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
Michael Reid
Affiliation:
Dept. Astronomy & Astrophysics, University of Toronto, ON, M5S 3H4, Canada
Farid Qamar
Affiliation:
Dept. Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
Alison Sills
Affiliation:
Dept. Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
Nicholas Petitclerc
Affiliation:
Dept. Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
*
Corresponding author email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use images derived from collapsing, turbulent molecular cloud simulations without sinks to explore the effects of finite image angular resolution and noise on the derived clump mass function. These effects randomly perturb the clump masses, producing a lognormal clump mass function with a Salpeter-like high mass end. We show that the characteristic break mass of the simulated clump mass functions changes with the angular resolution of the images in a way that is entirely consistent with the observations. We also present some cautionary tales regarding sink particles and highlight the need to ensure that sinks actually correspond to distinct collapsing objects. We test several popular numerical sink criteria in the literature and compare to converged, non-sink results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Attwood, R., Goodwin, S., Stamatellos, D. & Whitworth, A. 2009, A&A, 495, 201Google Scholar
Bate, M., Bonnell, I. & Price, N. 1995, MNRAS, 277, 362CrossRefGoogle Scholar
Curtis, E. I. & Richer, J. S. 2010, MNRAS, 402, 603CrossRefGoogle Scholar
Federrath, C., Banerjee, R., Clark, P. & Klessen, R. 2010, ApJ, 713, 269CrossRefGoogle Scholar
Fryxell, et al. 2000, ApJS, 131, 273CrossRefGoogle Scholar
Johnston, D. et al. 2001, ApJ, 559, 307CrossRefGoogle Scholar
Kratter, K., Matzner, C., Krumholz, M., & Klein, R. 2010, ApJ, 708, 1585CrossRefGoogle Scholar
Krumholz, M., McKee, C., Klein, R. 2004, ApJ, 611, 399CrossRefGoogle Scholar
Larson, R. B. 1973, MNRAS, 161, 133CrossRefGoogle Scholar
Larson, R. B., 1985, MNRAS, 214, 379CrossRefGoogle Scholar
Motte, F., et al. 2001, A&A, 372, L41Google Scholar
Petitclerc, N. 2009, Ph.D. Thesis, McMaster UniversityGoogle Scholar
Pineda, J. E., Rosolowsky, E. W., & Goodman, A. A. 2009, ApJ, 699, L134CrossRefGoogle Scholar
Reid, M., Wadsley, J., Petitclerc, N., & Sills, A. 2010, ApJ, acceptedGoogle Scholar
Reid, M. A. & Wilson, C. D. 2006, ApJ, 650, 970CrossRefGoogle Scholar
Tothill, et al. 2002, ApJ, 580, 285CrossRefGoogle Scholar
Wadsley, J. W., Stadel, J., & Quinn, T. 2004, New Astronomy, 9, 137CrossRefGoogle Scholar
Williams, J. P., de Geus, E. J., & Blitz, L. 1994, ApJ, 428, 693CrossRefGoogle Scholar