Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T16:27:19.039Z Has data issue: false hasContentIssue false

An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey

Published online by Cambridge University Press:  04 June 2020

Joel Leja
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA02138, USA
Benjamin D. Johnson
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA02138, USA
Charlie Conroy
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA02138, USA
Pieter van Dokkum
Affiliation:
Department of Astronomy, Yale University, New Haven, CT06511, USA
Joshua S. Speagle
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galaxies are complicated physical systems which obey complex scaling relationships; as a result, properties measured from broadband photometry are often highly correlated, degenerate, or both. Therefore, the accuracy of basic properties like stellar masses and star formation rates (SFRs) depend on the accuracy of many second-order galaxy properties, including star formation histories (SFHs), stellar metallicities, dust properties, and many others. Here, we re-assess measurements of galaxy stellar masses and SFRs using a 14-parameter physical model built in the Prospector Bayesian inference framework. We find that galaxies are ∼0.2 dex more massive and have ∼0.2 dex lower star formation rates than classic measurements. These measurements lower the observed cosmic star formation rate density and increase the observed buildup of stellar mass, finally bringing these two metrics into agreement at the factor-of-two level at 0.5 < z < 2.5.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Behroozi, P., Wechsler, R. H., Hearin, A. P., et al. 2019, MNRAS, 488, 314310.1093/mnras/stz1182CrossRefGoogle Scholar
Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 150310.1086/591786CrossRefGoogle Scholar
Carnall, A. C., Leja, J., Johnson, B. D., et al. 2019, ApJ, 873, 4410.3847/1538-4357/ab04a2CrossRefGoogle Scholar
Kriek, M., van Dokkum, P. G., Labbé, I., et al. 2009, ApJ, 700, 22110.1088/0004-637X/700/1/221CrossRefGoogle Scholar
Leja, J., Carnall, A. C., Johnson, B. D., et al. 2019, ApJ, 876, 310.3847/1538-4357/ab133cCrossRefGoogle Scholar
Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P., Speagle, J. S., Brammer, G., Momcheva, I., Skelton, R, Whitaker, & K. E., Franx, M. 2019, ApJ, 877, 140L10.3847/1538-4357/ab1d5aCrossRefGoogle Scholar
Leja, J., Johnson, B. D., Conroy, C., et al. 2017, ApJ, 837, 17010.3847/1538-4357/aa5ffeCrossRefGoogle Scholar
Leja, J., van Dokkum, P. G., Franx, M., et al. 2015, ApJ, 798, 11510.1088/0004-637X/798/2/115CrossRefGoogle Scholar
Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, ApJ Supplement, 214, 2410.1088/0067-0049/214/2/24CrossRefGoogle Scholar
Tomczak, A. R., Quadri, R. F., Tran, K.-V. H., et al. 2014, ApJ, 783, 8510.1088/0004-637X/783/2/85CrossRefGoogle Scholar
Whitaker, K. E., Franx, M., Leja, J., et al. 2014, ApJ, 795, 10410.1088/0004-637X/795/2/104CrossRefGoogle Scholar