Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T09:56:55.777Z Has data issue: false hasContentIssue false

An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

Published online by Cambridge University Press:  29 April 2014

Daniel Angerhausen
Affiliation:
Rensselaer Polytechnic Institute (RPI), 110 Eighth Street, Troy, NYUSA12180 email: [email protected]
Haley Sapers
Affiliation:
Centre for Planetary Science and Exploration, University of Western Ontario, Canada
Eugenio Simoncini
Affiliation:
Centro de Astrobiologa, INTA-CSIC, Madrid, Spain
Stefanie Lutz
Affiliation:
School of Earth & Environment, University of Leeds, UK
Marcelo da Rosa Alexandre
Affiliation:
Chemistry Department, Federal University of Sergipe, Brazil
Douglas Galante
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108Google Scholar
Howard, A. W., Marcy, G. W., Bryson, S. T., et al. 2012, ApJs, 201, 15CrossRefGoogle Scholar
Dole, S. H. 1964, New York, Blaisdell Pub. Co. 1st ed.Google Scholar
Pierrehumbert, R. T. 2011, ApJl, 726, L8CrossRefGoogle Scholar
Pierrehumbert, R. & Gaidos, E. 2011, ApJl, 734, L13CrossRefGoogle Scholar
Angerhausen, D., Sapers, H., Citron, R., et al. 2013, Astrobiology, 13, 309Google Scholar
Coulter, C. B., Stone, F. M., & Kabat, E. A., 1936, JGP, vol. 19, no. 5, 739752CrossRefGoogle Scholar
France, K., Tian, F., Linsky, J. L., et al. 2012, AAS Meeting Abstracts 220 129.07Google Scholar
Simoncini, E. & Delgado-Bonal, A., 2014, submittedGoogle Scholar
Heng, K. & Vogt, S. S., 2011, MNRAS, 415, 2145Google Scholar
Kondepudi, D. & Prigogine, I., 1996, Modern Thermodynamics (Wiley)Google Scholar
Lovelock, J. E., 1975, Proc. R. Soc. Lond., B. 189, 167Google Scholar