Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T19:33:43.341Z Has data issue: false hasContentIssue false

An Analysis of M31 and its Satellite Galaxies Using RR Lyrae Variables

Published online by Cambridge University Press:  30 October 2019

Nahathai Tanakul
Affiliation:
National Astronomical Research Institute of Thailand, 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand email: [email protected]
Ata Sarajedini
Affiliation:
Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611, USA Department of Physics, Florida Atlantic University, 777 Glades Rd, SE-43, Room 256 Boca Raton, FL 33431, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

RR Lyrae stars are powerful tools to study their host populations. Information such as distance, metallicity, reddening, and age can be obtained from their pulsation properties. Dwarf spheroidal (dSph) galaxies are the most common type of galaxy in the Local Group. They are found around massive hosts such as the Milky Way (MW) and M31 and are suggested to be the present-day counterparts to systems from which spheroids and stellar halos of larger galaxies were assembled. By comparing RR Lyraes in these dSphs with their host galaxies, we hope to understand more about the formation of these galaxies. In order to achieve this goal, we have analyzed six fields in M31 using archival imaging from the Hubble Space Telescope. Published data for M31, M33, and several M31 dSphs are also included. The results are then compared with those in the MW to better constrain the early history of these systems.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Brown, T. M., Ferguson, H. C., Smith, E., Kimble, R. A., Sweigart, A. V., Renzini, A., & Rich, R. M. 2004, AJ, 127, 2738 10.1086/386355CrossRefGoogle Scholar
Cacciari, C., & Renzini, A. 1976, A&A, 25, 303 Google Scholar
Cusano, F., Clementini, G., Garofalo, A., Cignoni, M., Federici, L., Marconi, M., Musella, I., Ripepi, V., Boutsia, K., Fumana, M., Gallozzi, S., & Testa, V. 2003, ApJ, 779, 7 10.1088/0004-637X/779/1/7CrossRefGoogle Scholar
Cusano, F., Garofalo, A., Clementini, G., Cignoni, M., Federici, L., Marconi, M., Musella, I., Ripepi, V., Speziali, R., Sani, E., & Merighi, R. 2015, ApJ, 806, 200 10.1088/0004-637X/806/2/200CrossRefGoogle Scholar
Fiorentino, G., Bono, G., Monelli, M., Stetson, P. B., Tolstoy, E., Gallart, C., Salaris, M., Martnez-Vázquez, C. E., & Bernard, E. J. 2015, ApJ, 631, 976 Google Scholar
Jeffery, E. J., Smith, E., Brown, T. M., Sweigart, A. V., Kalirai, J. S., Ferguson, H. C., Guhathakurta, P., Renzini, A., & Rich, R. M. 2011, AJ, 141, 171 10.1088/0004-6256/141/5/171CrossRefGoogle Scholar
Koopman, R. A., Lee, Y. W., Demarque, P., & Howard, J. M. 1994, ApJ, 423, 380 10.1086/173814CrossRefGoogle Scholar
Monelli, M., Martnez-Vázquez, C. E., Bernard, E. J., Gallart, C., Skillman, E. D., Weisz, D. R., Dolphin, A. E., Hidalgo, S. L., Cole, A. A., Martin, N. F., Aparicio, A., Cassisi, S., Boylan-Kolchin, M., Mayer, L., McConnachie, A., McQuinn, K. B. W., & Navarro, J. F. 2016, ApJ, 819, 147 10.3847/0004-637X/819/2/147CrossRefGoogle Scholar
Moore, B., Lee, Y. W., Demarque, P., & Howard, J. M. 1994, ApJ, 423, 380 Google Scholar
Oosterhoff, P. T. 1939, The Observatory, 62, 104 Google Scholar
Zorotovic, M., Catelan, M., Smith, H. A., Pritzl, B. J., Aguirre, P., Angulo, R. E., Aravena, M., Assef, R. J., Contreras, C., Cortés, C., De Martini, G., Escobar, M. E., González, D., Jofré, P., Lacerna, I., Navarro, C., Palma, O., Prieto, G. E., Recabarren, E., Triviño, J., & Vidal, E., 2010, AJ, 139, 357 10.1088/0004-6256/139/2/357CrossRefGoogle Scholar