Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T10:57:53.188Z Has data issue: false hasContentIssue false

ALMA observations of submillimeter H2O and SiO lines in Orion Source I

Published online by Cambridge University Press:  16 July 2018

Tomoya Hirota
Affiliation:
National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588, Japan email: [email protected]
Masahiro N. Machida
Affiliation:
Kyushu University, Fukuoka-shi 819-0395, Japan
Yuko Matsushita
Affiliation:
Kyushu University, Fukuoka-shi 819-0395, Japan
Kazuhito Motogi
Affiliation:
Yamaguchi University, Yamaguchi-shi 753-8512, Japan
Naoko Matsumoto
Affiliation:
National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588, Japan email: [email protected] Yamaguchi University, Yamaguchi-shi 753-8512, Japan
Mikyoung Kim
Affiliation:
Korea Astronomy and Space Science Institute, Daejeon 305-348, Republic of Korea National Astronomical Observatory of Japan, Oshu-shi, Iwate 023-0861, Japan
Ross A. Burns
Affiliation:
Joint Institute for VLBI ERIC, Postbus 2, 7990 AA Dwingeloo, The Netherlands
Mareki Honma
Affiliation:
National Astronomical Observatory of Japan, Oshu-shi, Iwate 023-0861, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present observational results of the submillimeter H2O and SiO lines toward a candidate high-mass young stellar object Orion Source I using ALMA. The spatial structures of the high excitation lines at lower-state energies of >2500 K show compact structures consistent with the circumstellar disk and/or base of the northeast-southwest bipolar outflow with a 100 au scale. The highest excitation transition, the SiO (v=4) line at band 8, has the most compact structure. In contrast, lower-excitation transitions are more extended than 200 au tracing the outflow. Almost all the line show velocity gradients perpendicular to the outflow axis suggesting rotation motions of the circumstellar disk and outflow. While some of the detected lines show broad line profiles and spatially extended emission components indicative of thermal excitation, the strong H2O lines at 321 GHz, 474 GHz, and 658 GHz with brightness temperatures of >1000 K show clear signatures of maser action.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bally, J., Ginsburg, A., Arce, H., et al., 2017, ApJ, 837, 60Google Scholar
Gaume, R. A., Wilson, T. L., Vrba, F. J., et al., 1998, ApJ, 493, 940CrossRefGoogle Scholar
Goddi, C., Humphreys, E. M. L., Greenhill, L. J., et al., 2011, ApJ, 728, 15CrossRefGoogle Scholar
Greenhill, L. J., Goddi, C., Chandler, C. J., et al., 2013, ApJ, 770, 32Google Scholar
Hirota, T, Kim, M. K. & Honma, M., 2012, ApJ (Letters), 757, L1Google Scholar
Hirota, T., Kim, M. K., & Honma, M., 2016, ApJ., 817, 168Google Scholar
Hirota, T., Machida, M. N., Matsushita, Y., et al., 2017, Nature Aston., 1, 146Google Scholar
Hirota, T., Kim, M. K., Kurono, Y., & Honma, M., 2014, ApJ (Letters), 782, L28Google Scholar
Humphreys, E. M. L. 2007, in: Chapman, J. M. & Baan, W. A. (eds.), Astrophysical Masers and their Environments, Proc. IAU Symposium No. 242 (Cambridge: CUP), p. 471Google Scholar
Kim, M. K., Hirota, T., Honma, M., et al., 2008, PASJ, 60, 991CrossRefGoogle Scholar
Matthews, L. D., Greenhill, L. J., Goddi, C., et al., 2010, ApJ, 708, 80Google Scholar
Menten, K. M. & Reid, M. J., 1995, ApJ, 445, L157Google Scholar
Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A., 2007, A&A, 474, 515Google Scholar
Plambeck, R. L. & Wright, M. C. H., 2016, ApJ, 833, 219Google Scholar
Rodríguez, L. F., Dzib, S. A., Loinard, L., et al., 2017, ApJ, 834, 140Google Scholar
Tercero, B., Vincent, L., Cernicharo, J., et al., 2011, A&A, 528, A26Google Scholar