Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T11:33:35.299Z Has data issue: false hasContentIssue false

All quiet on the Western front? New evidence for massive star formation in Sgr C

Published online by Cambridge University Press:  22 May 2014

Sarah Kendrew
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany Sub-Dept of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, United Kingdom
Adam Ginsburg
Affiliation:
CASA, University of Colorado at Boulder, UCB 389, Boulder, CO 80309, USA
Katharine Johnston
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Henrik Beuther
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
John Bally
Affiliation:
CASA, University of Colorado at Boulder, UCB 389, Boulder, CO 80309, USA
Claudia J. Cyganowski
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Cara Battersby
Affiliation:
CASA, University of Colorado at Boulder, UCB 389, Boulder, CO 80309, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarize here our recent findings from near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified extended green object (EGO) in Sgr C, whose observational characteristics suggest early-stage massive star formation is taking place. Located on the outskirts of the massive evolved Hii region associated with Sgr C in the Western central molecular zone (CMZ), the EGO measures ∼10″ (0.4 pc at 8.5 kpc). We confirm that early-stage star formation is taking place on the periphery of the Sgr C Hii region. The data show clear detections of two protostellar cores and several knots of H2 and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ∼103 M, with column densities of 1-2 × 1024 cm−2. The host molecular clouds mass is approximately 105 M. Despite these favorable conditions, the cloud is curiously devoid of any further star formation, making it comparable to other remarkably quiescent clouds, such as G0.253 in the Eastern CMZ.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Chambers, E. T., Yusef-Zadeh, F., & Roberts, D. 2011, ApJ 733, 42Google Scholar
Contreras, Y., et al. 2013, A&A 549, A45Google Scholar
Cyganowski, C. J., et al. 2008, AJ 136, 2391Google Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., & Churchwell, E. 2009, ApJ 702, 1615CrossRefGoogle Scholar
De Buizer, J. & Vacca, W. 2010, AJ 140, 196Google Scholar
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic MediumCrossRefGoogle Scholar
Forster, J. R. & Caswell, J. L. 2000, ApJ 530, 371CrossRefGoogle Scholar
Immer, K., Menten, K. M., Schuller, F., & Lis, D. C. 2012, A&A 548, A120Google Scholar
Kauffmann, J., Pillai, T., & Zhang, Q. 2013, arXiv, preprint, arXiv:1301.1338Google Scholar
Lang, C. C., Goss, W. M., Cyganowski, C., & Clubb, K. I. 2010, ApJS 191, 275CrossRefGoogle Scholar
Lis, D., Carlstrom, J., & Keene, J. 1991, ApJ 380, 429CrossRefGoogle Scholar
Lis, D. C. & Carlstrom, J. E. 1994, ApJ 424, 189Google Scholar
Lis, D. C., Menten, K. M., Serabyn, E., & Zylka, R. 1994, ApJ Lett. 423, L39CrossRefGoogle Scholar
Liszt, H. & Spiker, R. 1995, ApJS 98, 259CrossRefGoogle Scholar
Longmore, S. N., et al. 2012, ApJ 746, 117CrossRefGoogle Scholar
Schuller, F., et al. 2009, A&A 504, 415Google Scholar
Stolovy, S., et al. 2006, J. Phys. Conf. Ser. 54, 176CrossRefGoogle Scholar
Yusef-Zadeh, F., et al. 2009, ApJ 702, 178Google Scholar