Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T17:44:11.709Z Has data issue: false hasContentIssue false

Alfvén waves in a gravitational field with flows

Published online by Cambridge University Press:  01 September 2008

A. Satya Narayanan
Affiliation:
Indian Institute of AstrophysicsKoramangala II BLock, Bangalore - 560 034, India email: [email protected]
C. Kathiravan
Affiliation:
Indian Institute of AstrophysicsKoramangala II BLock, Bangalore - 560 034, India email: [email protected]
R. Ramesh
Affiliation:
Indian Institute of AstrophysicsKoramangala II BLock, Bangalore - 560 034, India email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The gravitational stratification effect on magnetohydrodynamic waves at a single interface in the solar atmosphere has been studied in the penumbral region of the sunspot recently. The existence of slow and fast magneto acoustic gravity waves and their characteristics has been discussed. The effect of flows on magneto acoustic gravity surface waves leads to modes called flow modes or v-modes. The present geometry is that of a plasma slab moving with uniform velocity surrounded by a plasma of different density. As is applicable to the corona, we assume that the plasma β to be small. The dispersion characteristics change significantly with a change in the value of G (gravity) and uniform flow.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Brown, T. M. & Harrison, R. L., 1980, Ap.J., 236, L169CrossRefGoogle Scholar
Cram, L. E., 1978, Astron & Astrophys., 70, 345Google Scholar
Dame, L., Gouttebroze, P., & Malherbe, M. 1984 Astron & Astrophys., 130, 331Google Scholar
De Moortel, I. & Hood, A. W. 2004 Astron & Astrophys., 415, 705Google Scholar
Deubner, F. L. 1974 Solar Phys. 39, 31CrossRefGoogle Scholar
Deubner, F. L. 1981 NASA - SP 450, 65Google Scholar
Edwin, P. M. & Roberts, B. 1982 Solar Phys., 76, 239Google Scholar
Erdelyi, R., Varga, E., & Zetenyi, M. 1999 ESA - SP, 448, 269Google Scholar
Erdelyi, R. & Fedun, V. 2007 Science, 318, 1572CrossRefGoogle Scholar
Frazier, E. N. 1968, Z. Astrophys., 68, 345Google Scholar
Kneer, F. & von Uexkull, M. 1993 Astron & Astrophys., 274, 584Google Scholar
Lighthill, M. J. 1967, IAU Symp., 28, 429Google Scholar
McEvan, M. P. & Diaz, A. J. 2007 Solar Phys., 246, 243Google Scholar
McKenzie, J. F. & Axford, W. I. 2000 Solar Phys., 193, 153Google Scholar
Miles, J. W. & Roberts, B. 1989 Plasma Phenomena Solar Atmosphere, 77Google Scholar
Miles, J. W. & Roberts, B. 1992 Solar Phys., 141, 205CrossRefGoogle Scholar
Miles, J. W., Allen, H. R., & Roberts, B. 1992 Solar Phys., 141, 235CrossRefGoogle Scholar
Mullan, D. J. & Khabibrakhmanov, I. K. 1999 ESA - SP, 446, 503Google Scholar
Nakariakov, V. M. & Verwichte, E. 2005 Living Reviews in Solar Phys., 2, 3CrossRefGoogle Scholar
Priest, E. 1982 Solar Magnetohydrodynamics, Reidel Publishing CompanyGoogle Scholar
Rathinavelu, D. G., Sivaraman, M., & Satya Narayanan, A. 2007 Plasma 2007, 189Google Scholar
Rutten, R. J. & Krijger, J. M. 2003 Astron & Astrophys., 407, 735CrossRefGoogle Scholar
Satya Narayanan, A. 2000 BASI, 28, 85Google Scholar
Schmieder, B. 1977 Solar Phys., 54, 269Google Scholar
Sengottuvel, M. P. & Somasundaram, K. 2001 Solar Phys., 198, 79Google Scholar
Stein, R. F. 1967, Solar Phys., 2, 385Google Scholar
Strauss, T. & Bonaccini, D. 1997 Astron & Astrophys., 324, 704Google Scholar
Tomczyk, et al. 2007 Science, 317, 1192Google Scholar
Van Doorsselaete, et al. 2007 Astron & Astrophys. 471, 311Google Scholar
Varga, E. & Erdelyi, R. 2001 ESA - SP, 464, 255Google Scholar