Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T02:05:05.808Z Has data issue: false hasContentIssue false

The AGN-galaxy connection: Low-redshift benchmark & lessons learnt

Published online by Cambridge University Press:  04 June 2020

Stéphanie Juneau*
Affiliation:
National Optical Astronomy Observatory, TucsonAZ85719, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several scenarios have been proposed to describe the physical connection between galaxies and their central active galactic nuclei (AGN). This connection could act on a range of spatial scales and vary across cosmic time. In these proceedings, we consider black hole and galaxy growth and whether that growth is affected by AGN feedback both based on statistical approaches – which reveal general population trends – and based on an individual case study – which gives us a more detailed insight on the physical processes at play. For the statistical approach, we showcase a low-redshift (0.04 < z < 0.2) SDSS sample with AGN classification based on a combination of emission-line diagnostic diagrams, and for which we account for sample selection by using a V/Vmax approach. The trends on the star formation rate - stellar mass (SFRM*) plane suggest that the most likely connection is a common gas reservoir for star formation and AGN, and that they both decline as the gas reservoir is consumed. The trends established at low-redshift could act as a local benchmark against which to compare higher redshift studies. As a complementary approach, we use a detailed case study of a nearby AGN host with integral field spectroscopy from the VLT/MUSE instrument in order to spatially resolve the interplay between AGN feedback and the host galaxy. We find that the galaxy substructure likely plays a role by collimating and/or obscuring the outflows and radiation from the central engine. Ongoing and future work with 3D spectroscopy will enable us to learn more about galaxy and black hole coevolution. Lastly, we briefly discuss lessons learnt from both approaches.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 54310.1088/0067-0049/182/2/543CrossRefGoogle Scholar
Alexander, D. M. & Hickox, R. C. 2012, NewAR, 56, 93CrossRefGoogle Scholar
Bacon, R., Accardo, M., Adjali, L., et al. 2010, SPIE Conference Series, Vol. 7735, id. 773508Google Scholar
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5CrossRefGoogle Scholar
Bassani, L., Dadina, M., Maiolino, R., et al. 1999, ApJS, 121, 473CrossRefGoogle Scholar
Beckmann, R. S., Devriendt, J., Slyz, A., Peirani, S., et al. 2017, MNRAS, 472, 949CrossRefGoogle Scholar
Bongiorno, A., Merloni, A., Brusa, M., Magnelli, B., et al. 2012, MNRAS, 427, 3103CrossRefGoogle Scholar
Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., et al. 2006, MNRAS, 370, 645CrossRefGoogle Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682CrossRefGoogle Scholar
Cappellari, M. & Emsellem, E., 2004 PASP, 116, 138CrossRefGoogle Scholar
Chen, C.-T. J., Hickox, R. C., Alberts, S., Brodwin, M., et al. 2013, ApJ, 773, 3CrossRefGoogle Scholar
Cid Fernandes, R., Stasínska, G., Mateus, A., & Vale Asari, N. 2011, MNRAS, 413, 1687CrossRefGoogle Scholar
Ciotti, L., Ostriker, J. P., & Proga, D. 2010, ApJ, 717, 708CrossRefGoogle Scholar
Cisternas, M., Jahnke, K., Inskip, K. J., et al. 2011, ApJ, 726, 57CrossRefGoogle Scholar
Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, 365, 11CrossRefGoogle Scholar
Davies, R. L., Groves, B., Kewley, L. J., et al. 2016, MNRAS, 462, 1616CrossRefGoogle Scholar
Delvecchio, I., Lutz, D., Berta, S., Rosario, D. J., et al. 2015, MNRAS, 449, 373CrossRefGoogle Scholar
Dey, A., Schlegel, D. J., Lang, D., Blum, R., et al. 2019, AJ, 157, 168CrossRefGoogle Scholar
Diamond-Stanic, A. M. & Rieke, G. H. 2012, ApJ, 746, 168CrossRefGoogle Scholar
Ellison, S. L., Teimoorinia, H., Rosario, D. J., & Mendel, T. 2016, MNRAS, 458, L34CrossRefGoogle Scholar
Fabian, A. C. 2012, ARA&A, 50, 455CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Freudling, W., Romaniello, M., Bramich, D. M., et al. 2013, A&A, 559, A96Google Scholar
Gabor, J. M. & Bournaud, F. 2013, MNRAS, 434, 606CrossRefGoogle Scholar
Gabor, J. M. & Davé, R. 2012, MNRAS, 427, 1816CrossRefGoogle Scholar
Gavazzi, et al. 2015, A&A, 580, 13Google Scholar
Grogin, N. A., Conselice, C. J., Chatzichristou, E., Alexander, D. M., et al. 2005, ApJ, 627, L97CrossRefGoogle Scholar
Groves, B., Brinchmann, J., & Walcher, C. J. 2012, MNRAS, 419, 1402CrossRefGoogle Scholar
Harrison, C. M., Costa, T., Tadhunter, C. N., Flütsch, A., et al. 2018, NatAs, 2, 198Google Scholar
Harrison, C. M. 2017, NatAs, 1, 16Google Scholar
Hickox, R. C., Jones, C., Forman, W. R., et al. 2009, ApJ, 696, 891CrossRefGoogle Scholar
Hirschmann, M., Charlot, S., Feltre, A., et al. 2017, MNRAS, 472, 2468CrossRefGoogle Scholar
Hirschmann, M., Dolag, K., Saro, A., et al. 2014, MNRAS, 442, 2304CrossRefGoogle Scholar
Ho, I.-T., Medling, A. M., Groves, B., et al. 2016, Ap&SS, 361, 280Google Scholar
Ho, L. C. 2008, ARA&A, 46, 475CrossRefGoogle Scholar
Husemann, B., Scharwächter, J., Davis, T. A., et al. 2019, arXiv e-prints,arXiv:1905.10385Google Scholar
Jahnke, K. & Maccío, A. V. 2011, ApJ, 734, 92CrossRefGoogle Scholar
Juneau, S., Bournaud, F., Charlot, S., et al. 2014, ApJ, 788, 88CrossRefGoogle Scholar
Juneau, S., Dickinson, M., Bournaud, F., Alexander, D. M., et al. 2013, ApJ, 764, 176CrossRefGoogle Scholar
Juneau, S., Dickinson, M., Alexander, D. M., & Salim, S. 2011, ApJ, 736, 104CrossRefGoogle Scholar
Karouzos, M., Im, M., Trichas, M., Goto, T., et al. 2014, ApJ, 784, 137CrossRefGoogle Scholar
Kartaltepe, J. S., Sanders, D. B., Le Floc’h, E., Frayer, D. T., et al. 2010, ApJ, 721, 98CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003a, MNRAS, 341, 33.CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003b, MNRAS, 346, 1055CrossRefGoogle Scholar
Kewley, L. J., Dopita, M. A., Leitherer, C., et al. 2013, ApJ, 774, 100CrossRefGoogle Scholar
Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961CrossRefGoogle Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R. S., et al. 2001, ApJ, 556, 121CrossRefGoogle Scholar
Lamastra, A., Bianchi, S., Matt, G.et al. 2009, A&A, 504, 73Google Scholar
Leslie, S. K., Kewley, L. J., Sanders, D. B., & Lee, N. 2015 MNRAS, 455, 82CrossRefGoogle Scholar
Lusso, et al. 2013, ApJ, 777, 28CrossRefGoogle Scholar
Magorrian, J.et al. 1998, AJ, 115, 2285CrossRefGoogle Scholar
Morris, S., Ward, M., Whittle, M., Wilson, A. S., & Taylor, K. 1985, MNRAS, 216, 193CrossRefGoogle Scholar
Mullaney, J. R., Alexander, D. M., Aird, J., Bernhard, E., et al. 2015, MNRAS, 453, 83CrossRefGoogle Scholar
Novak, G. S., Ostriker, J. P., & Ciotti, L. 2011, ApJ, 737, 26CrossRefGoogle Scholar
Osterbrock, D. E. & Ferland, G. J. 2006, University Science Books, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2edn.Google Scholar
Prieto, M. A., Mezcua, M., Fernández-Ontiveros, J. A., & Schartmann, M. 2014, MNRAS, 442, 2145CrossRefGoogle Scholar
Ricci, T. V, Steiner, J. E., May, D., Garcia-Rissmann, A., & Menezes, R. B. 2018, MNRAS, 473, 5334CrossRefGoogle Scholar
Riffel, R. A., Storchi-Bergmann, T., Dors, O. L., & Winge, C. 2009, MNRAS, 393, 783CrossRefGoogle Scholar
Roos, O., Juneau, S., Bournaud, F., & Gabor, J. M. 2015, ApJ, 800, 19CrossRefGoogle Scholar
Rosario, D. J., Santini, P., Lutz, D., Netzer, H., et al. 2013, ApJ, 771, 6310.1088/0004-637X/771/1/63CrossRefGoogle Scholar
Salim, et al.ApJS, 173, 267CrossRefGoogle Scholar
Schawinski, K., Koss, M., Berney, S., & Sartori, L. F. 2015, MNRAS, 451, 2517CrossRefGoogle Scholar
Schawinski, K., Urry, C. M., Simmons, B. D., et al. 2014, MNRAS, 440, 889CrossRefGoogle Scholar
Schawinski, K., Thomas, D., Sarzi, M., et al. 2007, MNRAS, 382, 1415CrossRefGoogle Scholar
Schaye, J., Crain, R. A., Bower, R. G.; Furlong, M., et al. 2015, MNRAS, 446, 521CrossRefGoogle Scholar
Silverman, J. D., Lamareille, F., Maier, C., Lilly, S. J., et al. 2009, ApJ, 696, 396CrossRefGoogle Scholar
Simpson, C. 2005, MNRAS, 360, 565CrossRefGoogle Scholar
Steinborn, L. K., Hirschmann, M., Dolag, K., Shankar, F., et al. 2018, MNRAS, 481, 341CrossRefGoogle Scholar
Tanaka, M. 2012, PASJ, 64, 37CrossRefGoogle Scholar
Treister, E., Schawinski, K., Urry, C. M., & Simmons, B. D. 2012, ApJ, 758, 39CrossRefGoogle Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898CrossRefGoogle Scholar
Trouille, L., Barger, A. J., & Tremonti, C. 2011, ApJ, 742, 46CrossRefGoogle Scholar
Trump, J. R., Weiner, B. J., Scarlata, C., et al. 2011, ApJ, 743, 144CrossRefGoogle Scholar
Trump, J. R., Sun, M., Zeimann, J. R., et al. 2015, ApJ, 811, 26CrossRefGoogle Scholar
Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295CrossRefGoogle Scholar
Yan, R. & Blanton, M. R. 2012, ApJ, 747, 61CrossRefGoogle Scholar