Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T12:09:39.618Z Has data issue: false hasContentIssue false

AGN Jets, Bubbles, and Heat Pumps

Published online by Cambridge University Press:  07 April 2020

Yi-Hao Chen
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, 275 N. Charter Street, Madison, WI53705, USA email: [email protected]
Sebastian Heinz
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, 275 N. Charter Street, Madison, WI53705, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radio-mode feedback from relativistic jets is one of the prominent heating mechanisms in clusters of galaxies. We present a long-term evolution of high-resolution MHD simulation of jets interacting with an environment modeled to represent the Perseus cluster. We investigate the thermodynamics of the ICM due to the gas motion triggered by the action of the jets and show that low-entropy gas is lifted efficiently in the wake of the inflating radio lobe. We look into the uplift mechanism and estimate the energy budget and the rate of thermal conduction. The redistribution of entropy suggests that heat conduction can play a more significant role in the thermal evolution of the cluster core in the presence of jets, which act effectively as a heat pump, thus heating the ICM more efficiently than jets would by themselves in an isentropic cluster.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Birzan, L., Rafferty, D. A., McNamara, B. R., Wise, M. W., & Nulsen, P. E. J., 2004, ApJ, 607, 80010.1086/383519CrossRefGoogle Scholar
Churazov, E., Forman, W., Jones, C., & Böhringer, H., 2000, A&A, 356, 788Google Scholar
Churazov, E., Bruggen, M., Kaiser, C. R., Böhringer, H., & Forman, W., 2001, ApJ, 554, 26110.1086/321357CrossRefGoogle Scholar
Dubey, A., Antypas, K., Ganapathy, M. K., Reid, L. B., Riley, K., Sheeler, D., Siegel, A., & Weide, K., 2009, Parallel Computing, 35, 51210.1016/j.parco.2009.08.001CrossRefGoogle Scholar
Fabian, A. C., 1994, ARAA, 32, 277CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Taylor, G. B., Allen, S. W., Crawford, C. S., Johnstone, R. M., & Iwasawa, K., 2006, MNRAS, 366, 41710.1111/j.1365-2966.2005.09896.xCrossRefGoogle Scholar
Fabian, A. C., et al., 2011, MNRAS, 418, 215410.1111/j.1365-2966.2011.19402.xCrossRefGoogle Scholar
Fabian, A. C., Walker, S. A., Russell, H. R., Pinto, C., Sanders, J. S., & Reynolds, C. S., 2017, MNRAS, 464, L110.1093/mnrasl/slw170CrossRefGoogle Scholar
Forman, W., et al., 2007, ApJ, 665, 105710.1086/519480CrossRefGoogle Scholar
Fryxell, B., et al., 2000, ApJS, 131, 27310.1086/317361CrossRefGoogle Scholar
Gendron-Marsolais, M., et al., 2017, ApJ, 848, 2610.3847/1538-4357/aa8a6fCrossRefGoogle Scholar
Hillel, S., & Soker, N., 2016, MNRAS, 455, 213910.1093/mnras/stv2483CrossRefGoogle Scholar
Lee, D., 2013, Journal of Computational Physics, 243, 26910.1016/j.jcp.2013.02.049CrossRefGoogle Scholar
Li, Y., Ruszkowski, M., & Bryan, G. L., 2017, ApJ, 847, 106CrossRefGoogle Scholar
McNamara, B. R., & Nulsen, P. E. J., 2012, New Journal of Physics, 14, 05502310.1088/1367-2630/14/5/055023CrossRefGoogle Scholar
Narayan, R., & Medvedev, M. V., 2001, ApJ, 562, L12910.1086/338325CrossRefGoogle Scholar
Pope, E. C. D., Babul, A., Pavlovski, G., Bower, R. G., & Dotter, A., 2010, MNRAS, 406, 2023Google Scholar
Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J., & Wise, M. W., 2006, ApJ, 652, 216CrossRefGoogle Scholar
Spitzer, L., 1962, Physics of Fully Ionized Gases, 2nd ed, InterscienceGoogle Scholar
Zhang, C., Churazov, E., & Schekochihin, A. A., 2018, MNRAS, 478, 478510.1093/mnras/sty1269CrossRefGoogle Scholar
Zhuravleva, I., et al., 2014, Nature, 515, 8510.1038/nature13830CrossRefGoogle Scholar
Zhuravleva, I., et al., 2015, MNRAS, 450, 418410.1093/mnras/stv900CrossRefGoogle Scholar