Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T05:20:00.909Z Has data issue: false hasContentIssue false

The ages of Galactic globular clusters in the context of self-enrichment

Published online by Cambridge University Press:  01 October 2008

T. Decressin
Affiliation:
Argelander Institute for Astronomy (AIfA), Auf dem Hügel 71, D-53121 Bonn, Germany email: [email protected], [email protected], [email protected]
H. Baumgardt
Affiliation:
Argelander Institute for Astronomy (AIfA), Auf dem Hügel 71, D-53121 Bonn, Germany email: [email protected], [email protected], [email protected]
P. Kroupa
Affiliation:
Argelander Institute for Astronomy (AIfA), Auf dem Hügel 71, D-53121 Bonn, Germany email: [email protected], [email protected], [email protected]
G. Meynet
Affiliation:
Geneva Observatory, University of Geneva, chemin des Maillettes 51, CH-1290 Sauverny, Switzerland email: [email protected], [email protected]
C. Charbonnel
Affiliation:
Geneva Observatory, University of Geneva, chemin des Maillettes 51, CH-1290 Sauverny, Switzerland email: [email protected], [email protected] LATT, CNRS UMR 5572, Université de Toulouse, 14 avenue Edouard Belin, F-31400 Toulouse Cedex 04, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A significant fraction of stars in globular clusters (about 70%-85%) exhibit peculiar chemical patterns, with strong abundance variations in light elements along with constant abundances in heavy elements. These abundance anomalies can be created in the H-burning core of a first generation of fast-rotating massive stars, and the corresponding elements are conveyed to the stellar surface thanks to rotational induced mixing. If the rotation of the stars is fast enough, this material is ejected at low velocity through a mechanical wind at the equator. It then pollutes the interstellar medium (ISM) from which a second generation of chemically anomalous stars can be formed. The proportion of anomalous stars to normal stars observed today depends on at least two quantities: (1) the number of polluter stars; (2) the dynamical history of the cluster, which may lose different proportions of first- and second-generation stars during its lifetime. Here we estimate these proportions, based on dynamical models for globular clusters. When internal dynamical evolution and dissolution due to tidal forces are accounted for, starting from an initial fraction of anomalous stars of 10% produces a present-day fraction of about 25%, still too small with respect to the observed 70-85%. In the case of gas expulsion by supernovae, a much higher fraction is expected to be produced. In this paper we also address the question of the evolution of the second-generation stars that are He-rich, and deduce consequences for the age determination of globular clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Aarseth, S. J. 1999, PASP, 111, 1333CrossRefGoogle Scholar
Baumgardt, H. & Kroupa, P. 2007, MNRAS, 380, 1589CrossRefGoogle Scholar
Baumgardt, H. & Makino, J. 2003, MNRAS, 340, 227CrossRefGoogle Scholar
Brown, T. M., Ferguson, H. C., Smith, E. et al. , 2005, AJ, 130, 1693CrossRefGoogle Scholar
Caloi, V. & D'Antona, F. 2005, A&A, 435, 987Google Scholar
Caloi, V. & D'Antona, F. 2007, A&A, 463, 949Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G. et al. , 2006, A&A, 450, 523Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., Lucatello, S., & Momany, Y. 2007, A&A, 464, 927Google Scholar
Charbonnel, C. 2005, in IAU Symposium 228, ed. Hill, V., François, P., & Primas, F., 347Google Scholar
De Marchi, G., Paresce, F., & Pulone, L. 2007, ApJl, 656, L65CrossRefGoogle Scholar
Decressin, T., Baumgardt, H., & Kroupa, P. 2008, A&A, in pressGoogle Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007a, A&A, 475, 859Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007b, A&A, 464, 1029Google Scholar
Denisenkov, P. A. & Denisenkova, S. N. 1989, Astronomicheskij Tsirkulyar, 1538, 11Google Scholar
Denisenkov, P. A. & Denisenkova, S. N. 1990, Soviet Astronomy Letters, 16, 275Google Scholar
D'Ercole, A., Vesperini, E., D'Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 1228Google Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008, A&A, 478, 467Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385Google Scholar
Langer, G. E. & Hoffman, R. D. 1995, PASP, 107, 1177CrossRefGoogle Scholar
Marks, M., Kroupa, P., & Baumgardt, H. 2008, MNRAS, 386, 2047CrossRefGoogle Scholar
Meynet, G. 1993, in The Feedback of Chemical Evolution on the Stellar Content of Galaxies, ed. Alloin, D. & Stasińska, G., 40Google Scholar
Milone, A. P., Bedin, L. R., Piotto, G. et al. , 2008, ApJ, 673, 241CrossRefGoogle Scholar
Piotto, G., Bedin, L. R., Anderson, J. et al. , 2007, ApJl, 661, L53CrossRefGoogle Scholar
Piotto, G., Villanova, S., Bedin, L. R. et al. , 2005, ApJ, 621, 777CrossRefGoogle Scholar
Prantzos, N. & Charbonnel, C. 2006, A&A, 458, 135Google Scholar
Prantzos, N., Charbonnel, C., & Iliadis, C. 2007, A&A, 470, 179Google Scholar
Reimers, D. 1975, Circumstellar envelopes and mass loss of red giant stars (Problems in stellar atmospheres and envelopes.), 229CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ, 121, 161CrossRefGoogle Scholar
Siess, L. 2006, A&A, 448, 717Google Scholar
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593Google Scholar
Townsend, R. H. D., Owocki, S. P., & Howarth, I. D. 2004, MNRAS, 350, 189CrossRefGoogle Scholar