Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T03:53:37.592Z Has data issue: false hasContentIssue false

Age spreads in star forming regions?

Published online by Cambridge University Press:  01 October 2008

R. D. Jeffries*
Affiliation:
Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rotation periods and projected equatorial velocities of pre-main-sequence (PMS) stars in star forming regions can be combined to give projected stellar radii. Assuming random axial orientation, a Monte-Carlo model is used to illustrate that distributions of projected stellar radii are very sensitive to ages and age dispersions between 1 and 10Myr which, unlike age estimates from conventional Hertzsprung-Russell diagrams, are relatively immune to uncertainties due to extinction, variability, distance etc. Application of the technique to the Orion Nebula cluster reveals radius spreads of a factor of 2–3 (FWHM) at a given effective temperature. Modelling this dispersion as an age spread suggests that PMS stars in the ONC have an age range larger than the mean cluster age, that could be reasonably described by the age distribution deduced from the Hertzsprung-Russell diagram. These radius/age spreads are certainly large enough to invalidate the assumption of coevality when considering the evolution of PMS properties (rotation, disks etc.) from one young cluster to another.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

D'Antona, F. & Mazzitelli, I. 1997, MemSAI, 68, 807Google Scholar
Elmegreen, B. G. 2007, ApJ, 668, 1064CrossRefGoogle Scholar
Hartmann, L. W. 2001, AJ, 121, 1030CrossRefGoogle Scholar
Herbst, W., Bailer-Jones, C. A. L., Mundt, R., Meisenheimer, K. & Wackermann, R. 2002, A&A, 396, 513Google Scholar
Hillenbrand, L. A. 1997, AJ, 113, 1733CrossRefGoogle Scholar
Hillenbrand, L. A., Bauermeister, A. & White, R. J. 2008, in van Belle, G. (ed.), 14th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, (San Francisco: Astronomical Society of the Pacific), p. 200Google Scholar
Huff, E. M. & Stahler, S. W. 2006, ApJ, 644, 355CrossRefGoogle Scholar
Jeffries, R. D. 2007a, MNRAS, 376, 1109CrossRefGoogle Scholar
Jeffries, R. D. 2007b, MNRAS, 381, 1169CrossRefGoogle Scholar
Lamm, M., Bailer-Jones, C. A. L., Mundt, R. & Herbst, W. 2005, A&A, 417, 557Google Scholar
Makidon, R. B., Rebull, L. M., Strom, S. E., Adams, M. T. & Patten, B. M. 2004, AJ, 127, 2228CrossRefGoogle Scholar
Palla, F. & Stahler, S. W. 2000, ApJ 540, 255CrossRefGoogle Scholar
Rhode, K. L., Herbst, W. & Mathieu, R. D. 2001, AJ 122, 3258CrossRefGoogle Scholar
Sicilia-Aguilar, A., Hartmann, L. W., Hernández, J., Briceño, C. & Calvet, N. 2005, AJ 130, 188CrossRefGoogle Scholar
Siess, L., Dufour, E. & Forestini, M. 2000, A&A 358, 593Google Scholar
Tan, J. C., Krumholz, M. R. & McKee, C. F. 2006, ApJ, 641, L121CrossRefGoogle Scholar