Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T23:55:33.907Z Has data issue: false hasContentIssue false

AGB mass loss

Published online by Cambridge University Press:  30 August 2012

Lee A. Willson
Affiliation:
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA50010 email: [email protected]
Qian Wang
Affiliation:
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA50010 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mass loss on the AGB removes most of the envelope and leaves a compact remnant to become a white dwarf and perhaps first the central star of a planetary nebula. The envelope mass provides an upper limit on the material available to form the PN, and the terminal mass loss rate plus the small remnant mass left on the core determines how much of that would still be available to form the PN after the star has evolved far enough to the blue. Given a mass loss formula based on observations or models, we can find the deathline where −dMstar/dt = (M/L) dL/dt and can find the contours of constant mass loss rate on a plot of M vs. L. From such plots we can derive the mass available for a PN and the lowest mass single star that can produce a PN of a given mass. However, some details important for PN formation remain uncertain, including the maximum mass loss rate achieved and the envelope mass left when AGB mass loss ceases.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Blöcker, T. 1995, A&A, 297, 727 Google Scholar
Bowen, G. H. 1988, ApJ, 329, 299 CrossRefGoogle Scholar
Cox, J. P. & Giuli, R. T. 1968, Principles of Stellar Structure, Gordon & Breach.Google Scholar
Fleischer, A. J., Gauger, A., & Sedlmayr, E. 1992, A&A, 266, 321 Google Scholar
Frankowski, A. 2003, A&A, 406, 265 Google Scholar
Gail, H.-P. & Sedlmayr, E. 1999, A&A, 347, 594 Google Scholar
Hill, S. J. & Willson, L. A. 1979, ApJ, 229, 1029 CrossRefGoogle Scholar
Höfner, S. 2009, Cosmic Dust - Near and Far, 414, 3 Google Scholar
Höfner, S., Gautschy-Loidl, R., Aringer, B., & Jørgensen, U. G. 2003, A&A, 399, 589 Google Scholar
Höfner, S. & Dorfi, E. A. 1997, A&A, 319, 648 Google Scholar
Höfner, S., Feuchtinger, M. U., & Dorfi, E. A. 1995, A&A, 297, 815 Google Scholar
Iben, I. Jr. 1984, ApJ, 277, 333 CrossRefGoogle Scholar
Marigo, P. 2002, A&A, 387, 507 Google Scholar
Mattsson, L., Wahlin, R., & Höfner, S. 2010, A&A, 509, A14 Google Scholar
Mattsson, L. & Höfner, S. 2011, A&A, 533, A42 Google Scholar
Olofsson, H., Carlstrom, U., Eriksson, K., Gustafsson, B., & Willson, L. A. 1990, A&A, 230, L13 Google Scholar
Paczyński, B. 1970, ACTAA, 20, 47 Google Scholar
Reimers, D. 1975, Memoires of the Societe Royale des Sciences de Liege, 8, 369 Google Scholar
Schröder, K.-P. & Cuntz, M., 2005, ApJ, 630, L73 CrossRefGoogle Scholar
Vassiliadis, E. & Wood, P. R. 1993, ApJ, 413, 641 CrossRefGoogle Scholar
Wachter, A., Schröder, K.-P., Winters, J. M., Arndt, T. U., & Sedlmayr, E. 2002, A&A, 384, 452 Google Scholar
Willson, L. A. 2007, Why Galaxies Care About AGB Stars: Their Importance as Actors and Probes, 378, 211 Google Scholar
Willson, L. A. 2000, ARAA, 38, 573 CrossRefGoogle Scholar
Willson, L. A. & Hill, S. J. 1979, ApJ, 228, 854 CrossRefGoogle Scholar
Woitke, P. 2006, A&A, 460, L9 Google Scholar
Wood, P. R. 1979, ApJ, 227, 220 CrossRefGoogle Scholar