Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T15:37:26.893Z Has data issue: false hasContentIssue false

Activity-Induced Radial Velocity Variation of M Dwarf Stars

Published online by Cambridge University Press:  29 April 2014

Jan Marie Andersen
Affiliation:
Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA, email: [email protected] Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, ster Voldgade 5-7, DK-1350, Copenhagen, Denmark
Heidi Korhonen
Affiliation:
Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, ster Voldgade 5-7, DK-1350, Copenhagen, Denmark Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar magnetic activity manifests itself in a variety of ways including starspots–cool, dark regions on the stellar surface. Starspots can cause variations (‘jitter’) in spectral line-profiles which can mimic the radial velocity (RV) variations caused by an orbiting planet, or create RV noise that can drown out a planetary signature. Cool, low-mass M dwarf stars can be highly active, which can make detection of potentially habitable planets around these stars difficult. We investigate radial velocity variations caused by different activity (spot) patterns on M dwarf stars in order to determine the limits of detectability for small planets orbiting active M dwarfs. We report on our progress toward the aim of answering the following questions: What types of spot patterns are realistic for M dwarf stars? What effect will spots have on M dwarf RV measurements? Can jitter from M dwarf spots mimic planetary signals? What is the ideal observing wavelength to reduce M dwarf jitter?

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Barnes, J. R., Jeffers, S. V., & Jones, H. R. A. 2010, MNRAS, 412, 1599Google Scholar
Boisse, I., Bouchy, F., Hébrard, G., et al. 2011, A&A, 528, A4Google Scholar
Boisse, I., Bonfils, X., & Santos, N. C. 2012, A&A, 545, A109Google Scholar
Eastman, J., Gaudi, B. S., & Agol, E. 2012, PASP, 125, 83Google Scholar
Ferraz-Mello, S., Tadeu dos Santos, M., Beaug, C.et al. 2011, A&A, 531, A161Google Scholar
Granzer, T., Schüssler, M., Caligari, P., & Strassmeier, K. G. 2000, A&A, 355, 1087Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951Google Scholar
Hackman, T., Jetsu, L., & Tuominen, I. 2000, A&A, 374, 171Google Scholar
Hatzes, A., Dvorak, R., Wu chterl, G., et al. 2010, A&A, 520, A93Google Scholar
Lèger, A., Rouan, D., Schneider, J, et al. 2009, A&A, 506, 287Google Scholar
Makarov, V. V. 2010, ApJ, 715, 500CrossRefGoogle Scholar
Piskunov, N. E., Tuominen, I., & Vilhu, O. 1990, A&A, 230, 363Google Scholar
Pont, Frdric, Aigrain, Suzanne & Zucker, Shay 2011, MNRAS, 411, 1953Google Scholar
Queloz, D., Henry, G. W., Sivan, J. P., et al. 2001, A&A, 379, 279Google Scholar
Queloz, D., Bouchy, F., Moutou, C., et al. 2009, A&A, 506, 303Google Scholar
Reiners, A., Bean, J. L., Huber, K. F., et al. 2010, ApJ, 710, 432Google Scholar
Solanki, S. K. 1999, Solar and Stellar Activity: Similarities and Differences, 158, 109Google Scholar
West, A. A., Hawley, S. L., Bochanski, J. J., et al. 2008, AJ, 135, 785Google Scholar