Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T13:17:02.147Z Has data issue: false hasContentIssue false

Accurate Photometry with Digitized Photographic Plates of the Moscow Collection

Published online by Cambridge University Press:  29 August 2019

K. V. Sokolovsky
Affiliation:
IAASARS, National Observatory of Athens, Greece Sternberg Astronomical Inst. MSU, Moscow, Russia Astro Space Center, LPI RAS, Moscow, Russia
A. M. Zubareva
Affiliation:
Sternberg Astronomical Inst. MSU, Moscow, Russia Institute of Astronomy RAS, Moscow, Russia
D. M. Kolesnikova
Affiliation:
Institute of Astronomy RAS, Moscow, Russia
N. N. Samus
Affiliation:
Sternberg Astronomical Inst. MSU, Moscow, Russia Institute of Astronomy RAS, Moscow, Russia
S. V. Antipin
Affiliation:
Sternberg Astronomical Inst. MSU, Moscow, Russia
A. A. Belinski
Affiliation:
Sternberg Astronomical Inst. MSU, Moscow, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Photographic plate archives contain a wealth of information about the positions and brightness of celestial objects decades ago. Plate digitization is necessary to make this information accessible, but extracting it is a technical challenge. We have developed algorithms to extract photometry with an accuracy of better than ∼0.1 mag. in the range 13 < B < 17 mag from photographic images obtained in 1948–1996 with the 40-cm Sternberg Institute astrograph (30 × 30 cm plate size, 10 × 10 deg field of view) and digitized using a flatbed scanner. The extracted photographic light-curves are used to identify thousands of new high-amplitude variable stars (>0.2 mag). The algorithms are implemented in the free software VaST available at http://scan.sai.msu.ru/vast/

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bacher, A., Kimeswenger, S., & Teutsch, P. 2005, MNRAS, 362, 542CrossRefGoogle Scholar
Barbieri, C., et al. 2004, Baltic Astron., 13, 665Google Scholar
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393Google Scholar
Davis, A., Barkume, K., Springob, C., Tam, F., & Strelnitski, V. 2004, JAAVSO, 32, 117Google Scholar
De Cuyper, J., de Decker, G., Laux, U., Winter, L., & Zacharias, N. 2012, in Ballester, P., Egret, D. & Lorente, N. P. F. (eds.), ADASS XXI, ASPCS, 461, 315Google Scholar
Grindlay, J., Tang, S., Los, E., & Servillat, M. 2012, in: Griffin, R. E., Hanisch, R. J. & Seaman, R. L., (eds.), New Horizons in Time-Domain Astronomy, Proc. IAU S285, (CUP: Cambridge, UK), p. 29Google Scholar
Grindlay, J., et al. 2009, in: Osborn, W. & Robbins, L. (eds.), Preserving Astronomy’s Photographic Legacy: Current State and the Future of North American Astronomical Plates, ASPCS, 410, 101Google Scholar
Henze, M., Meusinger, H., & Pietsch, W. 2008, A&A, 477, 67Google Scholar
Hippke, M., et al. 2017, ApJ, 837, 85CrossRefGoogle Scholar
Hogg, D. W., Blanton, M., Lang, D., Mierle, K., & Roweis, S. 2008, in: Argyle, R.W., Bunclark, P.S. & Lewis, J. R. (eds.), ADASS XVII, ASPCS, 394, 27Google Scholar
Kolesnikova, D. M., et al. 2010, Astron. Reports, 54, 1000CrossRefGoogle Scholar
Kolesnikova, D. M., et al. 2008, AcA., 58, 279Google Scholar
Krisciunas, K., 2001, astro-ph:6313Google Scholar
Kroll, P. 2009, in: Wolfschmidt, G. (ed.), Cultural Heritage of Astronomical Observatories: From Classical Astronomy to Modern Astrophysics, Proc. ICOMOS Symp., (ICOMOS, Paris), p. 311Google Scholar
Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, AJ, 139, 1782CrossRefGoogle Scholar
Markov, H., Tsvetkov, M., Borisova, A., & Petrov, N. 2012, PAS ‘Rudjer Boskovic’, 11, 201Google Scholar
Mink, J. 2014, in: Manset, N. & Forshay, P. (eds)., ADASS XXIII, ASPCS, 485, 231Google Scholar
Monet, D. G. et al. 2003, AJ, 125, 984CrossRefGoogle Scholar
Robert, V. et al., 2011 MNRAS, 415, 70110.1111/j.1365-2966.2011.18747.xCrossRefGoogle Scholar
Samus, N., Antipin, S., Kolesnikova, D., Sat, L., & Sokolovsky, K. 2010, in: Prša, A., Zejda, M., eds., Binaries – Key to Comprehension of the Universe, ASPCS, 435, 135Google Scholar
Simcoe, R. J. 2009, in: Osborn, W. & Robbins, L. (eds.), Preserving Astronomy’s Photographic Legacy: Current State and the Future of North American Astronomical Plates, ASPCS, 410, 111Google Scholar
Sokolovsky, K. V., et al. 2014, Astron. Reports, 58, 31910.1134/S1063772914040088CrossRefGoogle Scholar
Sokolovsky, K., et al. 2014, in: Mišková, L., Vítek, S. (eds.), Astroplate 2014, (Inst. Chem. Tech., Prague), p. 79Google Scholar
Sokolovsky, K. V., Kolesnikova, D.M., Zubareva, A. M., Samus, N. N., & Antipin, S.V. 2016, Proc. Astroplate II 2016 (Prague), arXiv:1605.03571Google Scholar
Sokolovsky, K. V., & Lebedev, A. A. 2018, Astron. & Comput., 22, 28CrossRefGoogle Scholar
Spasovic, M., Dersch, C., Lange, C., Jovanovic, D., Schrimpf, A., 2016, arXiv:1610.00265Google Scholar
Stobie, R. S. 1984, NASA Conf. Publ., 2317, 209Google Scholar
Tang, S., Grindlay, J., Los, E., & Servillat, M. 2013, PASP, 125, 85710.1086/671760CrossRefGoogle Scholar
Turner, D. G., & Welch, G. A. 1989, PASP, 101, 1038CrossRefGoogle Scholar
Wertz, M., et al. 2017, AN, 338, 103Google Scholar
Yendell, P. S. 1905, Pop. Astron., 13, 453Google Scholar
Yu, Y., Zhao, J.-H., Tang, Z.-H., & Shang, Z.-J. 2017, Research Astron. Astrophys., 17, 2810.1088/1674-4527/17/3/28CrossRefGoogle Scholar
Zacharias, N., et al. 2013, AJ, 145, 4410.1088/0004-6256/145/2/44CrossRefGoogle Scholar