Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:59:34.175Z Has data issue: false hasContentIssue false

Accretion simulations of Eta Carinae and implications to massive binaries

Published online by Cambridge University Press:  30 December 2019

Amit Kashi*
Affiliation:
Department of Physics, Ariel University, Ariel, POB 3, 40700, Israel email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using high resolution 3D hydrodynamical simulations we quantify the amount of mass accreted onto the secondary star of the binary system η Carinae during periastron passage on its highly eccentric orbit. The accreted mass is responsible for the spectroscopic event occurring every orbit close to periastron passage, during which many lines vary and the x-ray emission associated with the destruction wind collision structure declines. The system is mainly known for its giant eruptions that occurred in the nineteenth century. The high mass model of the system, M1=170M and M2=80M, gives Macc≍ 3×10−6M compatible with the amount required for explaining the reduction in secondary ionization photons during the spectroscopic event, and also matches its observed duration. As accretion occurs now, it surely occurred during the giant eruptions. This implies that mass transfer can have a huge influence on the evolution of massive stars.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Akashi, M., Soker, N., & Behar, E. 2006, ApJ, 644, 451 CrossRefGoogle Scholar
Akashi, M. S., Kashi, A., & Soker, N. 2013, New Astron., 18, 23 CrossRefGoogle Scholar
Corcoran, M. F., Hamaguchi, K., Liburd, J. K., et al. 2015, arXiv:1507.07961Google Scholar
Davidson, K., Helmel, G., & Humphreys, R. M. 2018, RNAAS, 2, 133 CrossRefGoogle Scholar
Davidson, K., & Humphreys, R. M. 1997, ARA&A, 35, 1 CrossRefGoogle Scholar
Davidson, K., & Humphreys, R. M. 2012, Astrophysics and Space Science Library, Eta Carinae and the Supernova Impostors, 384CrossRefGoogle Scholar
Davidson, K., Ishibashi, K., Martin, J. C., & Humphreys, R. M. 2018, ApJ, 858, 109 CrossRefGoogle Scholar
Davidson, K., Ishibashi, K., Gull, T. R., Humphreys, R. M., & Smith, N. 2000, ApJL, 530, L107 CrossRefGoogle Scholar
Davidson, K., Ishibashi, K., & Martin, J. C. 2017, RNAAS, 1, 6 CrossRefGoogle Scholar
Davidson, K., Martin, J., Humphreys, R. M., et al. 2005, AJ, 129, 900 CrossRefGoogle Scholar
Folini, D., & Walder, R. 2000, Ap&SS, 274, 189 Google Scholar
Folini, D., & Walder, R. 2002, Interacting Winds from Massive Stars, 260, 605 Google Scholar
Kashi, A. 2017, MNRAS, 464, 775 CrossRefGoogle Scholar
Kashi, A., Davidson, K., & Humphreys, R. M. 2016, ApJ, 817, 66 CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2009a, MNRAS, 397, 1426 CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2009b, New Astron., 14, 11 CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2016, ApJ, 825, 105 CrossRefGoogle Scholar
Madura, T. I., Gull, T. R., Okazaki, A. T., et al. 2013, MNRAS, 436, 3820 CrossRefGoogle Scholar
Mehner, A., Davidson, K., Humphreys, R. M., et al. 2015, A&A, 578, A122 Google Scholar
Okazaki, A. T., Owocki, S. P., Russell, C. M. P., & Corcoran, M. F. 2008, MNRAS, 388, L39 CrossRefGoogle Scholar
Parkin, E. R., Pittard, J. M., Corcoran, M. F., Hamaguchi, K., & Stevens, I. R. 2009, MNRAS, 394, 1758 CrossRefGoogle Scholar
Parkin, E. R., Pittard, J. M., Corcoran, M. F., & Hamaguchi, K. 2011, ApJ, 726, 105 CrossRefGoogle Scholar
Soker, N. 2005a, ApJ, 619, 1064 CrossRefGoogle Scholar
Soker, N. 2005b, ApJ, 635, 540 CrossRefGoogle Scholar
Teodoro, M., Damineli, A., Arias, J. I., et al. 2012, ApJ, 746, 73 CrossRefGoogle Scholar
Walder, R., & Folini, D. 2000, Ap&SS, 274, 343 Google Scholar
Walder, R., & Folini, D. 2002, Interacting Winds from Massive Stars, 260, 595 Google Scholar
Walder, R., & Folini, D. 2003, A Massive Star Odyssey: From Main Sequence to Supernova, 212, 139 Google Scholar