Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T20:57:12.882Z Has data issue: false hasContentIssue false

Accretion Disks of Bounce-Back CVs

Published online by Cambridge University Press:  21 February 2013

Gagik Tovmassian
Affiliation:
Instituto de Astronomia, UNAM, Ensenada, BC, Mexico email: [email protected], [email protected]
Sergey Zharikov
Affiliation:
Instituto de Astronomia, UNAM, Ensenada, BC, Mexico email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explore conditions and structure of accretion disks in the short-period Cataclysmic Variables, which have evolved beyond the period minimum. We show that the accretion disk in a system with extreme mass ratio grows in the size reaching 2:1 resonance radius and are relatively cool. They also become largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Araujo-Betancor, S., et al. 2005, A&A, 430, 629Google Scholar
Baba, H., et al. 2002, PASJ, 54, L7CrossRefGoogle Scholar
Cannizzo, J. K. & Wheeler, J. C. 1984, ApJS, 55, 367Google Scholar
Dumont, A. M., et al. 1991, A&A, 242, 503Google Scholar
Gänsicke, B. T., et al. 2009, MNRAS, 397, 2170CrossRefGoogle Scholar
Hachisu, , et al. 2004, ApJL, 606, L139Google Scholar
Idan, I., et al. 2008, New A. Rev., 51, 759Google Scholar
Kolb, U. & Baraffe, I. 1999, MNRAS, 309, 1034Google Scholar
Kuulkers, E., et al. 2011, A&A, 528, A152Google Scholar
Lin, D. N. C. & Papaloizou, J. 1979, MNRAS, 186, 799CrossRefGoogle Scholar
Paczynski, B. & Sienkiewicz, R. 1981, ApJL, 248, L27Google Scholar
Patterson, J., Masi, G., Richmond, M. W., et al. 2002, PASP, 114, 721Google Scholar
Papaloizou, J. & Pringle, J. E. 1979, MNRAS, 189, 293Google Scholar
Southworth, J., et al. 2006, MNRAS, 373, 687CrossRefGoogle Scholar
Tylenda, R. 1981, Acta. Astron, 31, 127Google Scholar
Williams, R. E. 1980, ApJ, 235, 939Google Scholar
Zharikov, S. V., et al. 2006, A&A, 449, 645Google Scholar
Zharikov, S. V., et al. 2008, A&A, 486, 505Google Scholar
Zharikov, S. V., et al. 2012, submitted to A&AGoogle Scholar