Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:06:10.565Z Has data issue: false hasContentIssue false

Accretion disk parameters in HLX-1

Published online by Cambridge University Press:  21 February 2013

Roberto Soria
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia email: [email protected]
George Hau
Affiliation:
European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We estimate the outer radius of the accretion disk in HLX-1 from its optical brightness and from the exponential timescale of the decline in the X-ray lightcurve after an outburst. We find that the disk is an order of magnitude smaller than the semimajor axis of the orbit. If the disk size is determined by the circularization radius near periastron, the eccentricity of the binary system must be ≳ 0.95. We report on the discovery of Hα emission during the 2012 outburst, with a single-peaked, narrow profile (consistent with a nearly face-on view), and a central velocity displaced by ≈ 490 km s−1 from that of the host galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Blanton, M. R. & Moustakas, J. 2009, ARA&A, 47, 159Google Scholar
Davis, S. W., et al. 2011, ApJ, 734, 111CrossRefGoogle Scholar
Farrell, S. A., Webb, N. A., Barret, D., Godet, O., & Rodrigues, J. M. 2009, Nature, 460, 73Google Scholar
Farrell, S. A., et al. 2012, ApJ, 747, L13CrossRefGoogle Scholar
Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics (Cambridge Un. Pr.)CrossRefGoogle Scholar
Gillessen, S., et al. 2009, ApJ, 692, 1075Google Scholar
Godet, O., Barret, D., Webb, N. A., Farrell, S. A., & Gehrels, N. 2009, ApJ, 705, L109CrossRefGoogle Scholar
King, A. R. & Ritter, H. 1998, MNRAS, 293, L42CrossRefGoogle Scholar
Lasota, J.-P., et al. 2011, ApJ, 735, 89CrossRefGoogle Scholar
Mapelli, M., Zampieri, L., & Mayer, L. 2012, MNRAS, 423, 1309CrossRefGoogle Scholar
Mapelli, M., Annibali, F., Zampieri, L., Soria, R., MNRAS, submittedGoogle Scholar
Powell, C. R., Haswell, C. A., & Falanga, M. 2007, MNRAS, 374, 466Google Scholar
Rees, M. J. 1988, Nature, 333, 523CrossRefGoogle Scholar
Sepinsky, J. F., Willems, B., Kalogera, V., & Rasio, F. A. 2007, ApJ, 667, 1170CrossRefGoogle Scholar
Sepinsky, J. F., Willems, B., Kalogera, V., & Rasio, F. A. 2007, ApJ, 702, 1387Google Scholar
Servillat, M., Farrell, S. A., Lin, D., Godet, O., Barret, D., & Webb, N. 2011, ApJ, 743, 6Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Soria, R., et al. 2010, MNRAS, 405, 870Google Scholar
Soria, R., Zampieri, L., Zane, S., & Wu, K. 2011, MNRAS, 410, 1886Google Scholar
Soria, R., Hakala, P. J., Hau, G. K. T., Gladstone, J. C., & Kong, A. K. H. 2012, MNRAS, 420, 3599Google Scholar
Soria, R. 2013, MNRAS, acceptedGoogle Scholar
Warner, B. 1995, Cataclysmic Variable Stars (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Webb, N., et al. 2012, Science, 337, 554Google Scholar
Wiersema, K., et al. 2010, ApJ, 721, L102Google Scholar