No CrossRef data available.
Published online by Cambridge University Press: 06 January 2014
We present preliminary results of a detailed chemical abundance analysis for a sample of solar-type stars known to exhibit excess infrared emission associated with dusty debris disks. Our sample of 28 stars was selected based on results from the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy Program, for the purpose of investigating whether the stellar atmospheres have been polluted with planetary material, which could indicate that the metallicity enhancement in stars with planets is due to metal-rich infall in the later stages of star and planet formation. The preliminary results presented here consist of precise abundances for 15 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Co, and Ni) for half of the stars in our sample. We find that none of the stars investigated so far exhibit the expected trend of increasing elemental abundance with increasing condensation temperature, which would result from the stars having accreted planetary debris. Rather, the slopes of linear least-squares fits to the abundance data are either negative or consistent with zero. In both cases, our results may indicate that, like the Sun, the debris disk host stars are deficient in refractory elements, a possible signature of terrestrial and/or gas giant planet formation.