Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T22:53:13.917Z Has data issue: false hasContentIssue false

Abundances and Gradients in M31 – A Chemical Study of Planetary Nebulae in the Substructures

Published online by Cambridge University Press:  08 August 2017

Xuan Fang
Affiliation:
Laboratory for Space Research, University of Hong Kong, Pokfulam Road, Hong Kong, China email: [email protected] Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
Rubén García-Benito
Affiliation:
Instituto de Astrofísica de Andalucía, Glorieta de la Astronomía s/n, 18008, Granada, Spain
Martín A. Guerrero
Affiliation:
Instituto de Astrofísica de Andalucía, Glorieta de la Astronomía s/n, 18008, Granada, Spain
Xiaowei Liu
Affiliation:
Department of Astronomy, School of Physics, Peking University, Beijing 100871, China Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
Yong Zhang
Affiliation:
Laboratory for Space Research, University of Hong Kong, Pokfulam Road, Hong Kong, China email: [email protected] Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Haibo Yuan
Affiliation:
Department of Astronomy, Beijing Normal University, Beijing 100875, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present deep optical spectroscopy of seven planetary nebulae (PNe) in the substructures of M31, three in the Northern Spur and four associated with the Giant Stream. The spectra were obtained with the OSIRIS spectrograph on the 10.4 m GTC. The detection of the [O iii] λ4363 auroral line in all PNe of our sample enables reliable abundance determinations. Our targets have low N/O (<0.5) and He/H ratios, indicating that they are probably Type II PNe. The PNe in our sample have rather homogeneous oxygen abundances, with an average value of 8.56±0.10. Based on the abundances as well as the spatial and kinematical information of our targets, we speculate that the Northern Spur and the Giant Stream might have the same origin. We raise a hypothesis that the dwarf satellite M32 might be responsible for these two substructures. New observations have recently been made to assess this hypothesis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Asplund, M., Grevesse, N., Sauval, A.-J., & Scott, P., 2009, ARA&A, 47, 481 Google Scholar
Balick, B., Kwitter, K. B., Corradi, R. L. M., & Henry, R. B. C., 2013, ApJ, 774, 3 Google Scholar
Corradi, R. L. M., Kwitter, K. B., Balick, B., et al. 2015, ApJ, 807, 181 CrossRefGoogle Scholar
Esteban, C., Bresolin, F., Peimbert, M., et al. 2009, ApJ, 700, 654 CrossRefGoogle Scholar
Fang, X., García-Benito, R., Guerrero, M. A., et al. 2015, ApJ, 915, 69 Google Scholar
Fang, X., Zhang, Y., García-Benito, R., Liu, X.-W., & Yuan, H.-B., 2013, ApJ, 774, 138 Google Scholar
Ibata, R. A., Irwin, M. J., Lewis, G. F., et al. 2001, Natur, 412, 49 Google Scholar
Jacoby, G. H. & Ciardullo, R., 1999, ApJ, 515, 169 Google Scholar
Jacoby, G. H. & Ford, H. C., 1986, ApJ, 304, 490 CrossRefGoogle Scholar
Kwitter, K. B., Lehman, E. M. M., Balick, B., & Henry, R. B. C. 2012 ApJ, 753, 12 Google Scholar
McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2009, Natur, 461, 66 Google Scholar
Merrett, H. R., Kuijken, K., Merrifield, M. R., et al. 2003, MNRAS, 346, L62 Google Scholar
Merrett, H. R., Merrifield, M. R., Douglas, N. G., et al. 2006, MNRAS, 369, 120 Google Scholar
Milingo, J. B., Kwitter, K. B., Henry, R. B. C., & Souza, S. P., 2010, ApJ, 711, 619 Google Scholar
Sanders, N. E., Caldwell, N., McDowell, J., & Harding, P., 2012, ApJ, 758, 133 Google Scholar
White, S. D. M., 1978, MNRAS, 184, 185 Google Scholar
Yuan, H.-B., Liu, X.-W., Huo, Z.-Y., et al. 2010, RAA, 10, 599 Google Scholar
Zurita, A. & Bresolin, F., 2012, MNRAS, 427, 1463 Google Scholar