Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T01:31:13.316Z Has data issue: false hasContentIssue false

3D time-dependent hydrodynamical and radiative transfer modeling of Eta Carinae’s innermost fossil colliding wind structures

Published online by Cambridge University Press:  30 December 2019

Thomas Madura
Affiliation:
San José State University, One Washington Square, San José, CA 95192-0106, USA email: [email protected]
T. R. Gull
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
N. Clementel
Affiliation:
Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
M. Corcoran
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA The Catholic University of America, Washington, DC 20064, USA
A. Damineli
Affiliation:
IAG–USP, Rua do Matao 1226, Cidade Universitaria, Sao Paulo 05508-900, Brazil
K. Hamaguchi
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
D. J. Hillier
Affiliation:
University of Pittsburgh, 3941 OHara Street, Pittsburgh, PA 15260, USA
A. F. J. Moffat
Affiliation:
Universite de Montreal, CP 6128 Succ. A., Centre-Ville, Montreal, Quebec H3C 3J7, Canada
N. Richardson
Affiliation:
University of Toledo, Toledo, OH 43606-3390, USA
G. Weigelt
Affiliation:
Max-Planck-Institut fur Radioastronomie, Auf dem Hugel 69, D-53121 Bonn, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eta Carinae is the most massive active binary within 10,000 light-years. While famous for the largest non-terminal stellar explosion ever recorded, observations reveal a supermassive (∼120 M) binary consisting of an LBV and either a WR or extreme O star in a very eccentric orbit (e=0.9) with a 5.54-year period. Dramatic changes across multiple wavelengths are routinely observed as the stars move about in their highly elliptical orbits, especially around periastron when the hot (∼40 kK) companion star delves deep into the denser and much cooler (∼15 kK) extended wind photosphere of the LBV primary. Many of these changes are due to a dynamic wind-wind collision region (WWCR) that forms between the stars, plus expanding radiation-illuminated fossil WWCRs formed one, two, and three 5.54-year orbital cycles ago. These fossil WWCRs have been spatially and spectrally resolved by the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) at multiple epochs, resulting in data cubes that spatially map Eta Carinae’s innermost WWCRs and follow temporal changes in several forbidden emission lines (e.g. [Fe iii] 4659 Å, [Fe ii] 4815 Å) across the 5.54-year cycle. We present initial results of 3D time-dependent hydrodynamical and radiative-transfer simulations of the Eta Carinae binary and its WWCRs with the goal of producing synthetic data cubes of forbidden emission lines for comparison to the available HST/STIS observations. Comparison of the theoretical models to the observations reveals important details about the binary’s orbital motion, photoionization properties, and recent (5–15year) mass loss history. Such an analysis also provides a baseline for following future changes in Eta Carinae, essential for understanding the late-stage evolution of a nearby supernova progenitor. Our modeling methods can also be adapted to a number of other colliding wind binary systems (e.g. WR 140) that are scheduled to be studied with future observatories (e.g. the James Webb Space Telescope).

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Clementel, N., Madura, T. I., Kruip, C. J. H., & Paardekooper, J.-P. 2015, MNRAS, 450, 1388 CrossRefGoogle Scholar
Clementel, N., Madura, T. I., Kruip, C. J. H., Paardekooper, J.-P., & Gull, T. R. 2015, MNRAS, 447, 2445 CrossRefGoogle Scholar
Clementel, N., Madura, T. I., Kruip, C. J. H., Icke, V., & Gull, T. R. 2014, MNRAS, 443, 2475 CrossRefGoogle Scholar
Damineli, A., Hillier, D. J., Corcoran, M. F., et al. 2008, MNRAS, 386, 2330 CrossRefGoogle Scholar
Groh, J. H., Hillier, D. J., Madura, T. I., & Weigelt, G. 2012, MNRAS, 423, 1623 CrossRefGoogle Scholar
Gull, T. R., Madura, T. I., Teodoro, M., et al. 2016, MNRAS, 462, 3196 CrossRefGoogle Scholar
Hillier, D. J., Davidson, K., Ishibashi, K., & Gull, T. 2001, ApJ, 553, 837 CrossRefGoogle Scholar
Madura, T. I., Gull, T. R., Owocki, S. P., et al. 2012, MNRAS, 420, 2064 CrossRefGoogle Scholar
Madura, T. I., Gull, T. R., Okazaki, A. T., et al. 2013, MNRAS, 436, 3820 CrossRefGoogle Scholar
Okazaki, A. T., Owocki, S. P., Russell, C. M. P., & Corcoran, M. F. 2008, MNRAS, 388, L39 CrossRefGoogle Scholar
Parkin, E. R., Pittard, J. M., Corcoran, M. F., Hamaguchi, K., & Stevens, I. R. 2009, MNRAS, 394, 1758 CrossRefGoogle Scholar
Pittard, J. M. & Corcoran, M. F. 2002, A&A, 383, 636 Google Scholar
Richardson, N. D., Madura, T. I., St-Jean, L., et al. 2016, MNRAS, 461, 2540 CrossRefGoogle Scholar
Smith, N. 2006, ApJ, 644, 1151 CrossRefGoogle Scholar