Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:27:26.059Z Has data issue: false hasContentIssue false

3D Spectroscopic Surveys: Exploring Galaxy Evolution Mechanisms

Published online by Cambridge University Press:  05 December 2011

Benoît Epinat*
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 14, avenue Édouard Belin, F-31400 Toulouse, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review the major surveys of high redshift galaxies observed using integral field spectroscopy techniques in the visible and in the infrared. The comparison of various samples has to be done with care since they have different properties linked to their parent samples, their selection criteria and the methods used to study them. I present the various kinematic types of galaxies that are identified within these samples (rotators, mergers, etc.) and summarize the discussions on the mass assembly processes at various redshifts deduced from these classifications: at intermediate redshift (z ~ 0.6) merger may be the main mass assembly process whereas the role of cold gas accretion along cosmic web filaments may increase with redshift. The baryonic Tully-Fisher relation is also discussed. This relation seems to be already in place 3 Gyr after the Big-Bang and is then evolving until the present day. This evolution is interpreted as an increase of the stellar mass content of dark matter haloes of a given mass. The discovery of positive abundance gradients in MASSIV and LSD/AMAZE samples is highlighted. At z ~ 3 this discovery might be linked to cold gas accretion along cosmic filaments toward the centre whereas at lower redshift (z ~ 1.3), this may be mainly due to accretion of gas from outer reservoirs toward the centre via tidal tails due to interactions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bothwell, M. S., Chapman, S. C., Tacconi, L., et al. 2010, MNRAS, 405, 219Google Scholar
Bournaud, F. & Elmegreen, B. G. 2009, ApJL, 694, L158CrossRefGoogle Scholar
Cresci, G., Hicks, E. K. S., Genzel, R., et al. 2009, ApJ, 697, 115CrossRefGoogle Scholar
Cresci, G., Mannucci, F., Maiolino, R., et al. 2010, Nature, 467, 811CrossRefGoogle Scholar
Dekel, A., Birnboim, Y., Engel, G., et al. 2009, Nature, 457, 451CrossRefGoogle Scholar
Epinat, B., Amram, P., Balkowski, C., & Marcelin, M. 2010, MNRAS, 401, 2113CrossRefGoogle Scholar
Epinat, B., Contini, T., LeAAAAFèvre, O., et al. 2009, A&A, 504, 789Google Scholar
Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364CrossRefGoogle Scholar
Genzel, R., Burkert, A., Bouché, N., et al. 2008, ApJ, 687, 59CrossRefGoogle Scholar
Genzel, R., Newman, S., Jones, T., et al. 2010, ArXiv e-printsGoogle Scholar
Gnerucci, A., Marconi, A., Cresci, G., et al. 2010, ArXiv e-printsGoogle Scholar
Jones, T. A., Swinbank, A. M., Ellis, R. S., Richard, J., & Stark, D. P. 2010, MNRAS, 404, 1247Google Scholar
Kereš, D., Katz, N., Fardal, M., Davé, R., & Weinberg, D. H. 2009, MNRAS, 395, 160CrossRefGoogle Scholar
Law, D. R., Steidel, C. C., Erb, D. K., et al. 2009, ApJ, 697, 2057CrossRefGoogle Scholar
LeAAAAFèvre, O., Vettolani, G., Garilli, B., et al. 2005, A&A, 439, 845Google Scholar
Maiolino, R., Nagao, T., Grazian, A., et al. 2008, A&A, 488, 463Google Scholar
Mannucci, F., Cresci, G., Maiolino, R., et al. 2009, MNRAS, 398, 1915CrossRefGoogle Scholar
Neichel, B., Hammer, F., Puech, M., et al. 2008, A&A, 484, 159Google Scholar
Puech, M., Flores, H., Hammer, F., et al. 2008, A&A, 484, 173Google Scholar
Puech, M., Hammer, F., Flores, H., et al. 2010, A&A, 510, A68+Google Scholar
Queyrel, J., Contini, T., Pérez-Montero, E., et al. 2009, A&A, 506, 681Google Scholar
Rodrigues, M., Hammer, F., Flores, H., et al. 2008, A&A, 492, 371Google Scholar
Shapiro, K. L., Genzel, R., Förster Schreiber, N. M., et al. 2008, ApJ, 682, 231CrossRefGoogle Scholar
Shapiro, K. L., Genzel, R., Quataert, E., et al. 2009, ApJ, 701, 955CrossRefGoogle Scholar
Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2003, ApJ, 592, 728CrossRefGoogle Scholar
Steidel, C. C., Shapley, A. E., Pettini, M., et al. 2004, ApJ, 604, 534CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Neri, R., et al. 2010, Nature, 463, 781CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Smail, I., et al. 2008, ApJ, 680, 246CrossRefGoogle Scholar
Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661Google Scholar
Wright, S. A., Larkin, J. E., Law, D. R., et al. 2009, ApJ, 699, 421CrossRefGoogle Scholar
Yang, Y., Flores, H., Hammer, F., et al. 2008, A&A, 477, 789Google Scholar