Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T03:33:51.562Z Has data issue: false hasContentIssue false

3D AMR simulations of G2 as an outflow

Published online by Cambridge University Press:  09 February 2017

A. Ballone
Affiliation:
University Observatory Munich, Scheinerstraße 1, D-81679 München, Germany Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
M. Schartmann
Affiliation:
University Observatory Munich, Scheinerstraße 1, D-81679 München, Germany Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
A. Burkert
Affiliation:
University Observatory Munich, Scheinerstraße 1, D-81679 München, Germany Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany Max-Planck-Fellow
S. Gillessen
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
P.M. Plewa
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
O. Pfuhl
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
R. Genzel
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
F. Eisenhauer
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
T. Ott
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
E.M. George
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
M. Habibi
Affiliation:
Max-Planck-Institute for extraterrestrial Physics, Giessenbachstraße 1, D-85741 Garching bei München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the evolution of G2 in a Compact Source Scenario, where G2 is the outflow from a low-mass central star moving on the observed orbit. This is done through 3D AMR simulations of the hydrodynamic interaction of G2 with the surrounding hot accretion flow. A comparison with observations is done by means of mock position-velocity (PV) diagrams. We found that a massive (w = 5× 10−7M yr−1) and slow (vw = 50 km s−1) outflow can reproduce G2’s properties. A faster outflow (vw = 400 km s−1) might also be able to explain the material that seems to follow G2 on the same orbit.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Ballone, A., Schartmann, M., Burkert, A., et al. 2013, ApJ, 776, 13 CrossRefGoogle Scholar
Ballone, A., Schartmann, M., Burkert, A., et al. 2016, ApJL, 819, L28 Google Scholar
De Colle, F., Raga, A. C., Contreras-Torres, F. F., & Toledo-Roy, J. C. 2014, ApJL, 789, L33 CrossRefGoogle Scholar
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2012, Nature, 481, 51 Google Scholar
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2013a, ApJ, 763, 78 CrossRefGoogle Scholar
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2013b, ApJ, 774, 44 CrossRefGoogle Scholar
Pfuhl, O., Gillessen, S., Eisenhauer, F., et al. 2015, ApJ, 798, 111 Google Scholar
Scoville, N. & Burkert, A. 2013, ApJ, 768, 108 Google Scholar