Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:48:36.831Z Has data issue: false hasContentIssue false

ξ1 CMa: An Extremely Slowly Rotating Magnetic B0.7 IV Star

Published online by Cambridge University Press:  23 January 2015

Matt Shultz
Affiliation:
European Southern Observatory email: [email protected] Queen's University, Canada Royal Military College, Canada
Gregg Wade
Affiliation:
Royal Military College, Canada
Thomas Rivinius
Affiliation:
European Southern Observatory email: [email protected]
Wagner Marcolino
Affiliation:
Observatório do Valongo, UFRJ, Brazil
Huib Henrichs
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, the Netherlands
Jason Grunhut
Affiliation:
European Southern Observatory email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present our analysis of 6 years of ESPaDOnS spectropolarimetry of the magnetic β Cep star ξ1 CMa (B1 III). This high-precision magnetometry is consistent with a rotational period Prot > 40 yr. Absorption line profiles can be reproduced with a non-rotating model. We constrain R, L, and the stellar age via a Baade-Wesselink analysis. Spindown due to angular momentum loss via the magnetosphere predicts an extremely long rotational period if the magnetic dipole Bd > 6 kG, a strength also inferred by the best-fit sinusoids to the longitudinal magnetic field measurements BZ when phased with a 60-year Prot.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, A&A 537, A146Google Scholar
Fourtune-Ravard, C., Wade, G. A., Marcolino, W. L. F., et al. 2011, in Neiner, C., Wade, G., Meynet, G., & Peters, G. (eds.), IAU Symposium, Vol. 272 of IAU Symposium, pp 180–181Google Scholar
Hubrig, S., Briquet, M., Schöller, M., et al. 2006, MNRAS 369, L61Google Scholar
Hubrig, S., Ilyin, I., Schöller, M., et al. 2011, ApJ (Letters) 726, L5Google Scholar
Kochukhov, O., Makaganiuk, V., & Piskunov, N. 2010, A&A 524, A5Google Scholar
Nieva, M.-F. 2013, A&A 550, A26Google Scholar
Saesen, S., Briquet, M., & Aerts, C. 2006, Communications in Asteroseismology 147, 109CrossRefGoogle Scholar
Shultz, M., Wade, G. A., Grunhut, J., et al. 2012, ApJ 750, 2Google Scholar
Silvester, J., Neiner, C., Henrichs, H. F., et al. 2009, MNRAS 398, 1505CrossRefGoogle Scholar
ud-Doula, A. & Owocki, S. P. 2002, ApJ 576, 413Google Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2009, MNRAS 392, 1022Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A 369, 574Google Scholar
Weber, E. J. & Davis, L. Jr 1967, ApJ 148, 217Google Scholar