We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Department of Mathematics, Zhejiang Normal University, Jinhua321004, People's Republic of China ([email protected])
Guoen Hu
Affiliation:
Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou450001, People's Republic of China ([email protected])
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
1.Buckley, S. M., Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc.340 (1993), 253–272.CrossRefGoogle Scholar
2
2.Calderón, A. P., Commutators of singular integral operators, Proc. Nat. Acad. Sci. USA53 (1965), 1092–1099.10.1073/pnas.53.5.1092CrossRefGoogle ScholarPubMed
3
3.Calderón, C. P., On commutators of singular integrals, Studia Math.53 (1975), 139–174.CrossRefGoogle Scholar
4
4.Chen, J. and Hu, G., Weighted vector-valued bounds for a class of multilinear singular integral operators and applications, J. Korean Math. Soc.55 (2018), 671–694.Google Scholar
5
5.Cohen, J., A sharp estimate for a multilinear singular integral on ℝn, Indiana Univ. Math. J.30 (1981), 693–702.CrossRefGoogle Scholar
6
6.Duong, X., Gong, R., Grafakos, L., Li, J. and Yan, L., Maximal operator for multilinear singular integrals with non-smooth kernels, Indiana Univ. Math. J.58 (2009), 2517–2542.CrossRefGoogle Scholar
7
7.Duong, X., Grafakos, L. and Yan, L., Multilinear operators with non-smooth kernels and commutators of singular integrals, Trans. Amer. Math. Soc.362 (2010), 2089–2113.CrossRefGoogle Scholar
8
8.Duong, X. T. and McIntosh, A., Singular integral operators with nonsmooth kernels on irregular domains, Rev. Mat. Iberoamericana15 (1999), 233–265.CrossRefGoogle Scholar
9
9.Grafakos, L., Modern Fourier analysis, 2nd edn (Springer, New York, 2008).Google Scholar
10
10.Grafakos, L., Liu, L. and Yang, D., Multilple-weighted norm inequalities for maximal singular integrals with non-smooth kernels, Proc. Royal Soc. Edinb.141A (2011), 755–775.CrossRefGoogle Scholar
11
11.Hofmann, S., On certain non-standard Calderón–Zygmund operators, Studia Math.109 (1994), 105–131.10.4064/sm-109-2-105-131CrossRefGoogle Scholar
12
12.Hu, G., Weighted vector-valued estimates for a non-standard Calderón–Zygmund operator, Nonlinear Anal.165 (2017), 143–162.10.1016/j.na.2017.09.013CrossRefGoogle Scholar
13
13.Hu, G. and Li, D., A Cotlar type inequality for the multilinear singular integral operators and its applications, J. Math. Anal. Appl.290 (2004), 639–653.CrossRefGoogle Scholar
14
14.Hu, G. and Yang, D., Sharp function estimates and weighted norm inequalities for multilinear singular integral operators, Bull. London Math. Soc.35 (2003), 759–769.CrossRefGoogle Scholar
15
15.Hu, G., Yang, D. and Yang, D., Boundedness of maximal singular integral operators on spaces of homogeneous type and its applications, J. Math. Soc. Japan59 (2007), 323–349.CrossRefGoogle Scholar
16
16.Hu, G. and Zhu, Y., Weighted norm inequalities with general weights for the commutator of Calderón, Acta Math. Sinica, English Ser.29 (2013), 505–514.CrossRefGoogle Scholar
17
17.Hytönen, T., The sharp weighted bound for general Calderón–Zygmund operators, Ann. Math.175 (2012), 1473–1506.CrossRefGoogle Scholar
18
18.Hytönen, T., Lacey, M. T. and Pérez, C., Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc.45 (2013), 529–540.CrossRefGoogle Scholar
19
19.Hytönen, T. and Pérez, C., The L(log L)ε endpoint estimate for maximal singular integral operators, J. Math. Anal. Appl.428 (2015), 605–626.CrossRefGoogle Scholar
20
20.John, F., Quasi-isometric mappings, in Seminari 1962/63 Anal. Alg. Geom. e Topol., Ist. Naz. Alta Mat., Volume 2, pp. 462–473 (Edizioni Cremonese, Rome, 1965).Google Scholar
21
21.Lerner, A. K., On pointwise estimate involving sparse operator, New York J. Math.22 (2016), 341–349.Google Scholar
22
22.Lerner, A. K. and Nazarov, F., Intuitive dyadic calculus: The basics, Expo. Math., in press.Google Scholar
23
23.Lerner, A., Ombrossi, S., Pérez, C., Torres, R. H. and Trojillo–Gonzalez, R., New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv. Math.220 (2009), 1222–1264.CrossRefGoogle Scholar
24
24.Lerner, A. K., Obmrosi, S. and Rivera–Rios, I., On pointwise and weighted estimates for commutators of Calderón–Zygmund operators, Adv. Math.319 (2017), 153–181.CrossRefGoogle Scholar
25
25.Li, K., Sparse domination theorem for multilinear singular integral operators with Lr-Hörmander condition, Michigan Math. J.67 (2018), 253–265.CrossRefGoogle Scholar
26
26.Li, K., Moen, K. and Sun, W., The sharp weighted bound for multilinear maximal functions and Calderón–Zygmund operators, J. Four. Anal. Appl.20 (2014), 751–765.CrossRefGoogle Scholar
27
27.Petermichl, S., The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc.136 (2008), 1237–1249.10.1090/S0002-9939-07-08934-4CrossRefGoogle Scholar
28
28.Rao, M. and Ren, Z., Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Volume 146 (Marcel Dekker, New York, 1991).Google Scholar
29
29.Sawyer, E., Norm inequalities relating singular integrals and the maximal function, Studia Math.75 (1983), 253–263.CrossRefGoogle Scholar
30
30.Strömberg, J. O., Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J.28 (1979), 511–544.CrossRefGoogle Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Cao, Mingming
Olivo, Andrea
and
Yabuta, Kôzô
2022.
Extrapolation for multilinear compact operators and applications.
Transactions of the American Mathematical Society,
Vol. 375,
Issue. 7,
p.
5011.