Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T16:18:26.149Z Has data issue: false hasContentIssue false

Transitivity in spaces of vector-valued functions

Published online by Cambridge University Press:  05 August 2010

Félix Cabello Sánchez
Affiliation:
Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We exhibit a real Banach space M such that C(K,M) is almost transitive if K is the Cantor set, the growth of the integers in its Stone–Čech compactification or the maximal ideal space of L. For finite K, the space C(K,M) = M|K| is even transitive.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2010

References

1. Aizpuru, A. and Rambla, F., Almost transitivity in C 0 spaces of vector-valued functions, Proc. Edinb. Math. Soc. 132(2005), 513529.CrossRefGoogle Scholar
2. Avilés, A., Cabello Sánchez, F., Castillo, J. M. F., González, M. and Moreno, Y., On separably injective Banach spaces, submitted.Google Scholar
3. Banach, S., Théorie des opérations linéaires, Monografie Matematyczne, Volume 1 (Polish Scientific, Warsaw, 1932).Google Scholar
4. Becerra Guerrero and À. Rodríguez Palacios, J., Transitivity of the norm on Banach spaces, Extracta Math. 132(2002), 158.Google Scholar
5. Cabello Sánchez, F., Regards sur le problème des rotations de Mazur, Extracta Math. 12 (1997), 97116.Google Scholar
6. Cabello Sánchez, F., Transitivity of M-spaces and Wood's conjecture, Math. Proc. Camb. Phil. Soc. 124(1998), 513520.CrossRefGoogle Scholar
7. Cabello Sánchez, F., Diameter preserving linear maps and isometries, Arch. Math. 73(1999), 373379.CrossRefGoogle Scholar
8. Cembranos, P., C(K,E) contains a complemented copy of c 0, Proc. Am. Math. Soc. 91(1984), 556558.Google Scholar
9. Diestel, J. and Uhl, J. J. Jr, Vector measures, Mathematical Surveys and Monographs, Volume 15 (American Mathematical Society, Providence, RI, 1977).CrossRefGoogle Scholar
10. Gillman, L. and Jerison, M., Rings of continuous functions, Graduate Texts in Mathematics, Volume 43 (Springer, 1976).Google Scholar
11. Giordano, T. and Pestov, V., Some extremely amenable groups, C. R. Math. 334(2002), 273278.CrossRefGoogle Scholar
12. Giordano, T. and Pestov, V., Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu 6(2007), 279315.CrossRefGoogle Scholar
13. Greim, P., Jamison, J. and Kamińska, A., Almost transitivity of some function spaces, Math. Proc. Camb. Phil. Soc. 116(1994), 475488.CrossRefGoogle Scholar
14. I. Gurariĭ, V., Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Zh. 7(1966), 10021013 (in Russian).Google Scholar
15. Hausdorff, F., Grundzüge der Mengenlehre(Veit, Leipzig, 1914).Google Scholar
16. Kawamura, K., On a conjecture of Wood, Glasgow Math. J. 47(2005), 15.CrossRefGoogle Scholar
17. Lewis, W., The pseudo-arc, Bol. Soc. Mat. Mexicana 5(1999), 2577.Google Scholar
18. Lusky, W., Separable Lindenstrauss spaces, in Functional analysis: surveys and recent results, Notas de Matemàtica, Volume 63, pp. 1528 (North-Holland, Amsterdam, 1977).Google Scholar
19. Pestov, V., Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. 127(2002), 317357 (Corrigendum, Israel J. Math. 132(2005), 375–379).CrossRefGoogle Scholar
20. Pestov, V., Dynamics of infinite-dimensional groups and Ramsey-type phenomena, Publicações Matemáticas do Instituto Nacional de Matemática Pura e Aplicada (IMPA, Rio de Janeiro, 2005).Google Scholar
21. Pestov, V., Dynamics of infinite-dimensional groups: the Ramsey–Dvoretzky–Milman phenomenon, University Lecture Series, Volume 40 (American Mathematical Society, Providence, RI, 2006).Google Scholar
22. Rambla, F., A counter-example to Wood's conjecture, J. Math. Analysis Applic. 317(2006), 659667.CrossRefGoogle Scholar
23. Rolewicz, S., Metric linear spaces, Monografie Matematyczne, Volume 56 (PNW/Reidel, Warsaw/Dordrecht, 1984).Google Scholar
24. Sims, B., ‘Ultra’-techniques in Banach space theory, Queen's Papers in Pure and Applied Mathematics, Volume 60 (Queen's University, Kingston, Canada, 1982).Google Scholar
25. Wood, G. V., Maximal symmetry in Banach spaces, Proc. R. Irish Acad. A132(1982), 177186.Google Scholar