Article contents
Surprising relationships among unitary reflection groups
Published online by Cambridge University Press: 20 January 2009
Extract
The transpositions that generate a symmetric group can be represented as real reflections: symmetry operations of a regular simplex. Analogous unitary reflections serve to generate other factor groups of the braid group; they are symmetry operations of regular complex polytopes. Certain relationships among these groups have, as geometric counterparts, unexpected plane sections of the polytopes, beginning with the square sections of the regular tetrahedron. In Section 6, 5-dimensional coordinates will be used to exhibit pentagonal sections of the 4-dimensional regular simplex. The most spectacular instance of such “equatorial” sections occurs in the case of the Witting polytope in complex 4-space, so exquisitely drawn by Peter McMullen for the frontispiece of Regular Complex Polytopes [6]. This has a plane section 3{<5}3 which appears thare as Fig. 4.8B on page 48. Shephard [9, p. 92] called it 3(360)3. Its 120 vertices will be seen to be situated “inside” 120 of the 2160 faces 3{3}3 of the Witting polytope. These “faces” are self-inscribed octagons [7, p. 290].
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 1984
References
REFERENCES
- 1
- Cited by