Published online by Cambridge University Press: 20 January 2009
The study of extreme, strongly exposed points of closed, convex and bounded sets in Banach spaces has been developed especially by the interconnection of the Radon–Nikodým property with the geometry of closed, convex and bounded subsets of Banach spaces [5],[2] . In the theory of ordered Banach spaces as well as in the Choquet theory, [4], we are interested in the study of a special type of convex sets, not necessarily bounded, namely the bases for the positive cone. In [7] the geometry (extreme points, dentability) of closed and convex subsets K of a Banach space X with the Radon-Nikodým property is studied and special emphasis has been given to the case where K is a base for acone P of X. In [6, Theorem 1], it is proved that an infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to l1 if, and only if, X has the Krein–Milman property and its positive cone has a bounded base.