Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T22:20:02.488Z Has data issue: false hasContentIssue false

Splitting fusion systems over 2-groups

Published online by Cambridge University Press:  05 December 2012

Bob Oliver*
Affiliation:
Laboratoire Analyse, Géometrie et Applications, Institut Galilée, Université Paris 13, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We find conditions which imply that a saturated fusion system over a product of 2-groups splits as a product of fusion systems over the factors.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2012

References

1.Andersen, K., Oliver, B. and Ventura, J., Reduced, tame, and exotic fusion systems, Proc. Lond. Math. Soc. 105 (2012), 87152.CrossRefGoogle Scholar
2.Aschbacher, M., Finite group theory (Cambridge University Press, 1986).Google Scholar
3.Aschbacher, M., Kessar, R. and Oliver, B., Fusion systems in algebra and topology (Cambridge University Press, 2011).CrossRefGoogle Scholar
4.Broto, C., Castellana, N., Grodal, J., Levi, R. and Oliver, B., Subgroup families controlling p-local finite groups, Proc. Lond. Math. Soc. 91 (2005), 325354.CrossRefGoogle Scholar
5.Broto, C., Castellana, N., Grodal, J., Levi, R. and Oliver, B., Extensions of p-local finite groups, Trans. Am. Math. Soc. 359 (2007), 37913858.CrossRefGoogle Scholar
6.Broto, C., Levi, R. and Oliver, B., The homotopy theory of fusion systems, J. Am. Math. Soc. 16 (2003), 779856.CrossRefGoogle Scholar
7.Goldschmidt, D., Strongly closed 2-subgroups of finite groups, Annals Math. 102 (1975), 475489.CrossRefGoogle Scholar
8.Gorenstein, D., Finite groups (Harper & Row, 1968).Google Scholar
9.Gorenstein, D., Lyons, R. and Solomon, R., The classification of the finite simple groups, Volume 2, American Mathematical Society Surveys and Monographs, Volume 40 (American Mathematical Society, Providence, RI, 1996).Google Scholar
10.Oliver, B. and Ventura, J., Saturated fusion systems over 2-groups, Trans. Am. Math. Soc. 361 (2009), 66616728.CrossRefGoogle Scholar
11.Puig, L., Frobenius categories, J. Alg. 303 (2006), 309357.CrossRefGoogle Scholar
12.Suzuki, M., Group theory, I (Springer, 1982).CrossRefGoogle Scholar
13.Suzuki, M., Group theory, II (Springer, 1986).CrossRefGoogle Scholar